การสื่อสารกันระหว่าง RFID Reader กับ RFID Tag

การสื่อสารกันระหว่างเครื่องอ่าน (RFID Reader) กับ  RFID Tag

การสื่อสารกันระหว่างเครื่องอ่าน (RFID Reader) กับ  RFID Tag นั้นขึ้นอยู่กับประเภทของ  RFID  Tag  ก่อนที่กล่าวถึงรายละเอียดของการสื่อสารในแต่ละแบบ  อาณาเขตระหว่างเสาอากาศของเครื่องอ่าน (RFID Reader) สามารถส่งสัญญาณคลื่นวิทยุได้ระยะสั้นเรียกว่า  Near Field  ส่วนบริเวณที่ไกลออกไปเรียกว่า   Far Field  โดยปกติ Passive RFID ที่ใช้คลื่นความถี่  LF และ  HF จะติดต่อสื่อสารกับเครื่องอ่านในบริเวณที่เรียกว่า  Near Field   ในขณะที่คลื่นความถี่  UHF หรือสูงกว่า  จะติดต่อสื่อสารกับเครื่องอ่านในบริเวณ  Far Field   ดังนั้นจะเห็นได้ว่า RFID Tag ที่สื่อสารในบริเวณ  Far Field สามารถที่จะติดต่อสื่อสารได้ในระยะที่ไกลกว่า

ลักษณะการสื่อสารข้อมูลระหว่าง RFID Tag  กับเครื่องอ่านมีสามลักษณะคือ  Modulated backscatter, Transmitter type และ Transponder type

·         Modulated Backscatter  การสื่อสารลักษณะนี้  เครื่องอ่าน (RFID Reader) จะส่งคลื่นวิทยุในลักษณะต่อเนื่อง   (Continuous wave) ซึ่งจะส่งออกมาในลักษณะกระแส  AC  ผ่านเสาอากาศที่อยู่ใน  RFID Tag  เมื่อ RFID Tag ได้รับกระแสจากเครื่องอ่าน (RFID Reader)  เสาอากาศก็จะส่งพลังงานให้กับไมโครชิปที่อยู่ใน  RFID Tag   เพื่อให้  RFID Tag  มีกำลังไฟในการทำงาน  ซึ่งใช้กำลังไฟประมาณ  1.2 โวลท์  แต่ในกรณีของการเขียนข้อมูลจำเป็นต้องใช้กำลังไฟมากถึง  2.2  โวลท์จากเครื่องอ่าน (RFID Reader) ไมโครชิบเมื่อได้รับสัญญาณจากเครื่องอ่าน (RFID Reader) ก็จะทำการส่งข้อมูลกลับไปให้แก่เครื่องอ่าน (RFID Reader)  เมื่อเครื่องอ่าน (RFID Reader) ได้รับข้อมูลนี้  ก็จะทำการแปลค่าเหล่านั้น  การสื่อสารแบบนี้จะใช้สำหรับ  Passive และ  Semi-active

ในลักษณะการสื่อสารแบบนี้  เครื่องอ่าน (RFID Reader) จะเป็นอุปกรณ์ที่เริ่มต้นในการส่งข้อมูล  แล้ว RFID  Tag  จะส่งข้อมูลกลับมา  ในลักษณะนี้   RFID Tag ไม่สามารถสื่อสารได้  หากไม่มีเครื่องอ่าน (RFID Reader) เพราะว่าการทำงานในลักษณะนี้จะขึ้นอยู่กับเครื่องอ่าน (RFID Reader) เป็นสำคัญ

·         Transmitter  การสื่อสารลักษณะนี้จะใช้กับ  Active RFID Tag  เท่านั้น  การสื่อสารในลักษณะนี้   RFID Tag จะส่งข้อมูลเป็นช่วงเวลาที่กำหนดไว้  โดยไม่สนใจว่ามีเครื่องอ่าน (RFID Reader) อยู่หรือไม่  ดังนั้นการสื่อสารแบบนี้   Tag  จะเป็นอุปกรณ์ที่เริ่มการสื่อสารก่อนเสมอ

·         Transponder  การสื่อสารแบบนี้เช่นกับ  Active RFID Tag  บางประเภทเป็นพิเศษ  การสื่อสารแบบนี้   RFID Tag จะไม่ทำงาน  หรืออยู่ใน  Sleep  mode เมื่อไม่มีการติดต่อสื่อสารกับเครื่องอ่าน   ในช่วงที่  Tag  อยู่ใน Sleep Mode   Tag  อาจจะส่งข้อมูลออกมาเป็นระยะเพื่อตรวจดูว่า มีเครื่องอ่าน (RFID Reader) อยู่ในบริเวณดังกล่าวหรือไม่  เมื่อเครื่องอ่าน (RFID Reader) ได้รับสัญญาณดังกล่าว  เครื่องอ่าน (RFID Reader) ก็ส่งคำสั่งไปปลุก (wake up) ให้ RFID Tag ทำงาน  เมื่อ  RFID Tag ได้รับสัญญาณนี้จากเครื่องอ่าน (RFID Reader) ก็จะเริ่มทำการส่งข้อมูล   ในการสื่อสารแบบนี้   RFID Tag  ส่งข้อมูลเมื่อได้รับสัญญาณจากเครื่องอ่าน (RFID Reader) เท่านั้น

ในการสื่อสารระหว่างเครื่องอ่าน (RFID Reader) กับ  RFID Tag นั้นจะมีอยู่สองลักษณะคือ  การอ่าน  และการบันทึกข้อมูล

·         การอ่านสามารถที่จะอ่าน  RFID Tag พร้อมกันในเวลาเดียวกัน  หรือที่เรียกว่า  Tag collision  เมื่อมี  Tag มากกว่าหนึ่ง  Tag  ส่งสัญญาณกลับมาพร้อมกันให้กับเครื่องอ่าน (RFID Reader) เครื่องอ่าน (RFID Reader) จำเป็นต้องมี Protocol  เพื่อใช้ในการสื่อสารกับสัญญาณเหล่านั้น  เพื่อมิให้เกิดความสับสนในการสื่อสาร  Protocol  ที่ใช้ในการสื่อสารเรียกว่า   Anti-Collision  ปัจจุบันมีอยู่สอง  Protocol  ที่มีการใช้การอย่างแพร่หลาย  คือ

o    ALOHA สำหรับคลื่นวิทยุ HF

o    Tree Walking สำหรับคลื่นวิทยุ UHF

นอกเหนือจากประเด็นที่กล่าวมา  การสื่อสารระหว่างเครื่องอ่าน (RFID Reader) กับ  RFID Tag  ที่ดีควรจะทำให้เกิด ความแม่นยำในการอ่าน (Read Robustness) สูง  ความแม่นยำในการอ่าน  หมายถึงจำนวนครั้งที่สามารถการอ่าน RFID Tag ได้  เมื่อ  RFID Tag  นั้นอยู่ในบริเวณการอ่าน  (Read Zone)   ระบบอาร์เอฟไอดี (RFID) ที่ดีจำเป็นอย่างยิ่งที่จะต้องได้รับการออกแบบให้สามารถอ่าน  RFID Tag  ได้ตลอดเวลา  ปัจจัยที่มีผลอย่างยิ่งต่อการอ่าน  คือ

·         ระยะเวลาที่  RFID Tag  อยู่ในบริเวณการอ่าน (Read Zone) ยิ่ง RFID Tag  อยู่ในบริเวณการอ่านน้อยแค่ไหน  ความสามารถในการอ่านก็สั้นลงตามไปด้วย  

·          จำนวน  RFID Tag  ที่อยู่ในบริเวณการอ่านก็มีผลต่อ เนื่องจากว่า  จำนวน  RFID Tag ที่มีมาก  ก็มีผลให้สามารถให้  RFID Tag  ได้น้อยลง

·         ในกรณีของการบันทึกข้อมูลลงไปใน  RFID Tag  นั้น การบันทึกข้อมูลจะใช้เวลานานกว่าการอ่าน  เพราะว่าการเขียนจะมีกระบวนการทำงานที่มากกว่า  ได้แก่  การยืนยัน  RFID Tag  การลบข้อมูลเดิม  การบันทึกข้อมูลใหม่  และการยืนยันอีกครั้ง  ยิ่งไปกว่านั้นข้อมูลที่บันทึกลงไปใน  RFID Tag  จะมีลักษณะเป็นบล๊อก  ซึ่งมีผลทำให้การทำงานมีขั้นตอนเพิ่มมากขึ้น  ดังนั้นการบันทึกข้อมูลหนึ่งลงไปใน  RFID Tag  จะใช้เวลามากกว่าการอ่านข้อมูล  นอกจากนั้นการบันทึกข้อมูลยังต้องการระยะเวลาที่มากกว่า  เมื่อเปรียบเทียบกับการอ่าน   ระยะเวลาที่มากขึ้นมานั้นเป็นการยืนยันได้ว่า  การบันทึกข้อมูลนั้นต้องมีพลังงานมากพอ   และในท้ายที่สุด  การบันทึกข้อมูลลงใน  RFID Tag จำเป็นอย่างยิ่งต้องมี  RFID Tag  เพียง  Tag  เดียวอยู่ในบริเวณที่บันทึกข้อมูล  มิฉะนั้น  การบันทึกข้อมูลอาจจะผิดพลาดได้  เพราะอาจจะบันทึกข้อมูลลงใน  Tag ผิด Tagได้

เสาอากาศของเครื่องอ่าน (RFID Reader)

เครื่องอ่าน (RFID Reader) ติดต่อสื่อสารกับ  Tag โดยผ่านทางเสาอากาศของเครื่องอ่าน (RFID Reader) ซึ่งอาจจะเป็นอุปกรณ์ที่แยกออกจากเครื่องอ่าน (RFID Reader) และต่อเชื่อมกับเครื่องอ่าน (RFID Reader) โดยผ่านทางสายเคเบิล   หรือเป็นลักษณะที่รวมเข้ากับเครื่องอ่าน (RFID Reader)  เป็นอุปกรณ์เดียวกัน  ในกรณีที่เสาอากาศเชื่อมต่อกับเครื่องอ่าน (RFID Reader) โดยสายเคเบิล   ระยะห่างจากเครื่องอ่านกับเสาอากาศจะมีจำกัด อยู่แค่ 6 ถึง 25  ฟุต   เครื่องอ่านหนึ่งเครื่องอ่านสามารถที่จะต่อเชื่อมกับเสาอากาศได้ถึง 4 เสาอากาศ

ขอบข่ายของเสาอากาศเครื่องอ่าน  (Antenna Footprint)

ขอบข่ายของเสาอากาศจะเป็นตัวกำหนดอาณาเขตการอ่าน   (Read Zone)  โดยทั่วไปขอบข่ายของเสาอากาศมีรูปทรงเป็นสามมิติ  คล้ายกับลักษณะของบอลลูน  ที่พุ่งตรงออกจากเสาอากาศ (เหมือนรูปด้านล่าง)  บริเวณในส่วนที่พุ่งออกมานั้น  จะเป็นบริเวณที่เครื่องอ่านสามารถอ่านได้ดีที่สุด

แต่ในความเป็นจริง ขอบข่ายการอ่านนั้นมิได้เป็นรูปแบบที่กล่าวไว้ข้างต้น  การอ่านของเครื่องอ่าน (RFID Reader) บ่อยครั้งที่จะมีรูปแบบที่มิได้เป็นมาตรฐานเช่นนั้นทำให้เกิดบริเวณที่เครื่องอ่าน (RFID Reader) ไม่สามารถอ่านได้เรียกว่า   Dead Zone  ดังเช่นตัวอย่างด้านล่าง

ดังนั้น  เมื่อ RFID Tag อยู่ในบริเวณที่คลื่นวิทยุของเครื่องอ่าน (RFID Reader) ครอบคลุมถึง  แต่  RFID Tag  มีการเคลื่อนไปสู่บริเวณ  Dead Zone   Tag  ดังกล่าวก็จะไม่สามารถที่จะอ่านได้  จะเห็นได้ว่า  ความสามารถในการอ่านในลักษณะนี้จะมีความแน่นอนที่ต่ำ  เพราะฉะนั้นในการติดตั้งเสาอากาศของเครื่องอ่าน  จำเป็นอย่างยิ่งต้องให้บริเวณการอ่านอยู่ในบริเวณที่อ่านดีที่สุด  ถึงแม้ว่าระยะทางระหว่างเครื่องอ่าน (RFID Reader) จะสั้นบ้างเล็กน้อยก็ตาม   จากลักษณะที่กล่าวมาข้างต้นจะเห็นได้ว่า จำเป็นอย่างยิ่งที่จะศึกษาถึงขอบเขตการอ่านของเสาอากาศ  ก่อนที่จะมีติดตั้งเสาอากาศของเครื่องอ่าน (RFID Reader)

การตั้งเสาอากาศให้มีแนวทางเดียวกัน (Antenna Polarization)

จากที่กล่าวมาข้างต้น  เสาอากาศจะส่งคลื่นออกไปในบริเวณรอบ ๆ ทางที่คลื่นวิทยุนี้ส่งออกไปเรียกว่า  Antenna Polarization  ในการอ่าน  RFID Tag  ระยะการอ่าน  ความแม่นยำในการอ่าน  จะขึ้นต่อ  Antenna Polarization  และมุมในการอ่านของ RFID Tag เป็นอย่างมาก  ลักษณะของเสาอากาศ สำหรับคลื่น  UHF  จะมีสองลักษณะคือ 

·         Linear polarized

·         Circular polarized

การอ่านสำหรับเสาอากาศทั้งสองประเภทจะมีลักษณะเหมือนดังแผนภาพด้านล่าง

เสาอากาศแบบ Linear Polarized Antenna

เสาอากาศลักษณะนี้จะส่งคลื่นวิทยุออกมาในแนวเส้นตรง  ตามตัวอย่างด้านล่าง

เสาอากาศลักษณะนี้จะมีมุมในการอ่านที่แคบ แต่จะอ่านได้ในระยะไกลกว่า  ถ้าเปรียบเทียบ  เสาอากาศแบบ circular polarized   ซึ่งเสาอากาศแบบนี้จะง่ายในการกำหนดขอบเขตในการอ่าน  เพราะการอ่านเป็นเส้นตรง  เสาอากาศแบบนี้จะมีประโยชน์เป็นอย่างมากสำหรับการใช้งานที่  Tag  อยู่ในตำแหน่งคงที่ ตำแหน่งของ RFID Tag  สำหรับเสาอากาศลักษณะนี้มีลักษณะเหมือนตัวอย่างด้านล่าง

เสาอากาศแบบ Circular Polarized Antenna

เสาอากาศแบบนี้จะส่งคลื่นวิทยุออกมาในลักษณะเป็นวงกลมเหมือนดังภาพด้านล่าง  ดังนั้นคลื่นที่ออกมาจะมีจุดที่สูงที่สุด  และจุดที่ต่ำสุด                                

เนื่องจากลักษณะของคลื่นที่ออกมา  จะเห็นได้ว่า  เสาอากาศแบบนี้จะมีผลต่อตำแหน่งของ  RFID Tag น้อยกว่าเสาอากาศแบบแรก ดังนั้นเสาอากาศแบบนี้จึงเหมาะกับการใช้งานในลักษณะที่ตำแหน่งจาก  RFID Tag  ไม่สามารถที่จะคาดเดาได้  เสาอากาศแบบ circular polarized antenna จะมีมุมอ่านที่กว้างกว่า  ดังนั้นทำให้สามารถอ่าน  RFID Tag  ได้กว้างกว่า  ตำแหน่งของ  RFID Tag  สำหรับเสาอากาศประเภทนี้จะมีลักษณะเหมือนดังแผนภาพด้านล่างนี้

Reader collision

Reader collision จะเกิดขึ้นเมื่อมีเครื่องอ่าน (RFID Reader) มากกว่าหนึ่งเครื่องอยู่ในบริเวณการอ่าน (Read zone)   สภาพลักษณะนี้จะเกิดขึ้นเมื่อเสาอากาศของเครื่องอ่าน (RFID Reader) มากกว่าหนึ่งเครื่องส่งสัญญาณรบกวนกันเอง  เพื่อที่จะป้องกันปัญหาเหล่านี้  การติดตั้งเสาอากาศของเครื่องอ่าน (RFID Reader) ไม่ควรที่จะติดตั้งในลักษณะหันหน้าเข้าหากันโดยตรง  หากจำเป็นต้องหันเสาอากาศเข้าหากัน  จำเป็นอย่างยิ่งที่จะต้องตั้งเสาอากาศทั้งสองให้ห่างกันพอสมควร   เพื่อที่จะให้คลื่นวิทยุของเสาทั้งสองไม่รบกวนกัน

นอกเหนือจากวิธีที่กล่าวมาข้างต้นแล้ว  สามารถเลือกใช้วิธี  Division Multiple Access (TDMA)  ด้วยวิธีนี้เสาอากาศทั้งสองจะทำงานไม่พร้อมกัน  แต่วิธีนี้อาจจะเกิดปัญหาที่ว่า  RFID Tag  หนึ่งตัวอาจจะถูกอ่านมากกว่าหนึ่งครั้ง  ด้วยเครื่องอ่านคนละตัว  ดังนั้นจำเป็นอย่างยิ่งจะต้องระบบซอฟท์แวร์ที่ทำการกรองเฉพาะ Tagที่สนใจ เพื่อป้องกันไม่ให้เกิดการอ่านซ้ำ

คอนโทรลเลอร์ (Controller)

คอนโทรลเลอร์เป็นอุปกรณ์ที่ใช้ในการควบคุมการติดต่อสื่อสารระหว่างอุปกรณ์ภายนอกกับเครื่องอ่าน (RFID Reader)  ยกตัวอย่างเช่น  การพิมพ์เอกสารผ่านเครื่องพิมพ์  คอมพิวเตอร์จำเป็นต้องมีระบบซอฟท์แวร์ที่ติดตั้งในเครื่องคอมพิวเตอร์  เพื่อการพิมพ์เอกสาร  ลักษณะเดียวกัน  หากต้องการนำข้อมูลออกจากเครื่องอ่าน  คอมพิวเตอร์ก็จำเป็นต้องมีระบบ Controller

ระบบเซ็นเซอร์ (Annunciator หรือ Actuator)

จากที่กล่าวมาในข้างต้น  เครื่องอ่าน (RFID Reader) ไม่จำเป็นต้องเปิดทำงานตลอดเวลา  เครื่องอ่าน (RFID Reader) สามารถที่จะถูกตั้งให้เปิดและปิดทำงานได้ตามที่ต้องการ  การที่จะเปิดหรือปิดทำงานนั้น  อุปกรณ์ที่เรียกว่า  เซ็นเซอร์จะเข้ามามีบทบาทในส่วนนี้  เซ็นเซอร์จะทำหน้าที่เปิดและปิดเครื่องอ่านเมื่อได้รับสัญญาณจากภายนอก  สัญญาณที่เข้ามานั้นมีสองลักษณะ คือ  Annunciator  และ  Actuator   สัญญาณที่เป็น Annunciator จะเป็นสัญญานที่เป็นระบบอิเลกทรอนิคส์  เช่น  เสียงเตือน  สัญญาณไฟ  เป็นต้น  สำหรับสัญญานที่เป็น Actuator นั้นเป็นสัญญานที่เป็นสัญญานด้านกลไกต่าง ๆ เช่น  ประตูเปิดหรือปิด  หรือสัญญานจากระบบ PLC

ระบบ Host และระบบซอฟท์แวร์

ระบบ  Host  และระบบซอฟท์แวร์จะรวมถึงระบบต่าง ๆ ทั้งฮาร์ดแวร์  และซอฟท์แวร์ที่แยกออกจากอุปกรณ์ฮาร์ดแวร์ของอาร์เอฟไอดี (RFID) ระบบส่วนนี้จะประกอบด้วย

·         ระบบ Edge interface  ส่วนนี้จะเป็นส่วนที่ต่อเชื่อมระบบทั้งหมดเข้ากับฮาร์ดแวร์อาร์เอฟไอดี (RFID)   หน้าที่หลักของส่วนนี้คือ  รับข้อมูลจากเครื่องอ่าน  (RFID Reader) ควบคุมการทำงานของเครื่องอ่าน (RFID Reader)   และเชื่อมโยงเครื่องอ่าน (RFID Reader) กับอุปกรณ์ภายนอก หรือการต่อเชื่อมกับอุปกรณ์ภายนอกโดยตรงไม่ต้องผ่านเครื่องอ่าน (RFID Reader)  เช่น เซนเซอร์ ต่าง ๆ  ระบบนี้จะใกล้ชิดกับเครื่องอ่าน (RFID Reader) เป็นอย่างมาก  นอกเหนือจากหน้าที่ที่กล่าวมาข้างต้นแล้ว  ระบบนี้อาจมีหน้าที่เพิ่มเติมอีกด้วย  ได้แก่

·         กรองข้อมูลสำหรือการอ่านซ้ำจากเครื่องอ่านหลายเครื่อง

·         จัดให้มีการตั้งระบบอัตโนมัติเมื่อได้รับข้อมูลจากเซนเซอร์ภายนอก

·         จัดระบบงานที่ซับซ้อนเช่น  การรวบรวม  หรือการเลือกส่งข้อมูลจาก  tag  ไปสู่ระบบทั้งหลาย

·         การบริหารและจัดการเครื่องอ่าน

·         ระบบ Middleware  ระบบ Middleware เป็นระบบที่ต่อเชื่อมระหว่าง  Edge interface  และ ระบบซอฟท์แวร์ Back-end interface.  หน้าที่ของระบบ  Middlewareจะประกอบด้วย

·         การจัดแบ่งข้อมูลระหว่างจากภายในและภายนอกระบบ

·         การบริหารข้อมูลของระบบอาร์เอฟไอดี (RFID) อย่างมีประสิทธิภาพ

·         ทำหน้าที่ในการกลั่นกรองข้อมูลเพื่อนำไปปฏิบัติการ

·         จัดการระบบเพื่อให้สามารถใช้งานได้กับระบบซอฟท์แวร์ในการใช้งาน

·         ระบบการต่อเชื่อมกับซอฟท์แวร์ Enterpriseback-end  เป็นส่วนที่ใช้สำหรับการเชื่อมต่อกับระบบ middleware กับซอฟท์แวร์ enterprise back-end.  ส่วนนี้เป็นส่วนสำคัญในการปรับระบบเชื่อมกับกระบวนการจัดการ (Business process)  สาเหตุที่ไม่สามารถเชื่อมต่อ  Middle ware  กับซอฟท์แวร์สำเร็จรูปได้  เนื่องจาก  ระบบ middleware ส่วนใหญ่เป็นซอฟท์แวร์ที่สำเร็จรูป  ดังนั้นการนำไปใช้งานจึงหลีกเลี่ยงไม่ได้ที่ต้องมีการปรับเปลี่ยนแก้ไข   เพื่อที่จะให้การเชื่อมต่อข้อมูลระหว่างระบบ Middleware กับซอฟท์แวร์ enterprise back endเป็นไปอย่างมีประสิทธิภาพ  ในปัจจุบันมีระบบซอฟท์แวร์ในการปฏิบัติการจำนวนมากที่มีการพัฒนาระบบเชื่อมต่อนี้ไว้ในโปรแกรมที่พัฒนาขึ้น 

·         ระบบซอฟท์แวร์ Enterprise  Back End  ประกอบด้วยระบบซอฟท์แวร์ที่ใช้ในการปฏิบัติการทั้งหมด   ซึ่งส่วนนี้จะเป็นส่วนที่เก็บข้อมูล  และกระบวนการในการปฏิบัติงานทั้งหมด  ในแง่ของระบบอาร์เอฟไอดี (RFID) ระบบซอฟท์แวร์ส่วนนี้  จะเป็นส่วนที่ฐานข้อมูลสำหรับ  RFID Tag  แต่ละ  RFID Tag  ที่ระบบ  Middleware  ได้รับข้อมูล  และเพื่อปฏิบัติการต่าง ๆ

ระบบโครงสร้างการติดต่อสื่อสาร

ระบบนี้จะเป็นส่วนที่ใช้ในการต่อเชื่อมองค์ประกอบต่าง ๆ ของระบบอาร์เอฟไอดี (RFID) เข้าด้วยกัน  ซึ่งการเชื่อมต่ออาจจะเป็นระบบสายหรือไร้สายก็ได้  ในแง่ของระบบสายอาจจะเป็นการเชื่อมต่อด้วย  Serial ระหว่างเครื่องอ่าน  (RFID Reader) และคอมพิวเตอร์    ในกรณีของการเชื่อมต่อด้วยระบบไร้สาย  อาจจะเป็นระบบง่าย ๆ เช่นระบบ  Bluetooth  หรือ ระบบไร้สายอย่างกว้างขึ้นเช่น  ระบบ  WAN   หรือระบบดาวเทียม  เป็นต้น

สรุป

ระบบอาร์เอฟไอดี (RFID) ประกอบด้วยส่วนต่าง ๆ หลายส่วน  โดยเริ่มตั้งแต่อุปกรณ์ที่เกี่ยวกับเทคโนโลยีอาร์เอฟไอดี (RFID) โดยเฉพาะ ได้แก่  RFID Tag  และเครื่องอ่านอาร์เอฟไอดี (RFID Reader) แต่องค์ประกอบสองส่วนนี้มิได้ทำให้ระบบอาร์เอฟไอดี (RFID) สามารถทำงานได้อย่างมีประสิทธิภาพ  ในการนำไปใช้จำเป็นอย่างยิ่งต้องมีอุปกรณ์  ได้แก่  อุปกรณ์ด้าน Networkต่าง ๆ  รวมถึงระบบซอฟท์แวร์ต่าง ๆ  เช่น   Middle ware   ERP software  เป็นต้น  ในการนำระบบทั้งหมดสามารถใช้ได้อย่างมีประสิทธิภาพ  จำเป็นอย่างยิ่งที่จะต้องทำให้อุปกรณ์ต่าง ๆ สอดคล้องกันอย่างดี 

0 replies

Leave a Reply

Want to join the discussion?
Feel free to contribute!

Leave a Reply

Your email address will not be published. Required fields are marked *