Posts

คุณลักษณะสำคัญของอาร์เอฟไอดีแท๊ก (RFID Tag) สำหรับงานอุตสาหกรรม

ปัจจุบันมีการนำอาร์เอฟไอดีแท๊ก (RFID Tag) มาใช้งานในภาคอุตสาหกรรมมากขึ้น   อาร์เอฟไอดีแท๊ก (RFID Tag) ที่จะนำมาใช้งานในด้านนี้  นอกเหนือจากปัจจัยพื้นฐาน ได้แก่  คลื่นความถี่  มาตรฐานคลื่นวิทยุ   หน่วยความจำ  รูปแบบของอาร์เอฟไอดีแท๊ก (RFID Tag)  และวิธีการติดอาร์เอฟไอดีแท๊ก (RFID Tag) เป็นต้น   จำเป็นอย่างยิ่งที่จะต้องคำนึงความคงทนของ อาร์เอฟไอดีแท๊ก (RFID Tag)  เช่น อาร์เอฟไอดีแท๊ก (RFID Tag) ที่ทนต่อสารเคมี  ความร้อนสูง  หรือ ป้องกันการติดไฟ  เป็นต้น  เนื่องจากว่า การนำอาร์เอฟไอดีแท๊ก (RFID Tag) มาใช้ในอุตสาหกรรมต่าง ๆ ที่ต้องการความทนทานสูงนั้น  เช่นอุตสาหกรรมก่อสร้าง   พลังงาน  หรือการขนส่ง  เป็นต้น    จำเป็นอย่างยิ่งที่จะต้องคำนึงมาตรฐานความคงทนในด้านต่าง ๆ  เพิ่มเติม  โดยมาตรฐานหลัก ๆ ที่จำเป็นต้องคำนึงถึง ประกอบด้วย

  • ATEX/IECEx certification

มาตรฐานดังกล่าว  เป็นมาตรฐานสำหรับอุปกรณ์ที่นำมาใช้ในบริเวณที่มีความเสี่ยงอันตรายจากการระเบิด   ตามมาตรฐาน ATEX  จะแบ่งพื้นที่เป็น 3 โซน  ได้แก่ Zone 0, Zone 1 และ Zone 2  โดย Zone 0  หมายถึงพื้นที่ที่มีความเสี่ยงของการระเบิดจากไอระเหยตลอดเวลา   ส่วน Zone  1 คือ  พื้นที่ที่โดยส่วนมากมีความเสี่ยงจากการระเบิดจากการทำงานปกติ  แต่ไม่ได้มีความเสี่ยงดังกล่าวตลอดเวลา  Zone 2 เป็นพื้นที่ที่มีความเสี่ยงจากการระเบิดในบางโอกาส    แต่พื้นที่ดังกล่าวจะเป็นพื้นที่ปลอดภัย  ภายใต้การทำงานตามกฏระเบียบที่แน่ชัด   มาตรฐานดังกล่าว จะใช้กับอุปกรณ์ไฟฟ้า หรืออิเล็กทรอนิค  ที่จะนำไปติดตั้งหรือใช้งานในบริเวณโซนต่าง ๆ ที่ระบุไว้ข้างต้น   สำหรับอาร์เอฟไอดีแท๊ก (RFID Tag) ที่ได้รับมาตรฐาน ATEX แสดงว่า อาร์เอฟไอดีแท๊ก (RFID Tag) ดังกล่าวได้รับการยืนยันว่า  สามารถนำไปใช้ในบริเวณที่มีความเสี่ยงต่อการจุดระเบิดได้  

  • IP Certification

มาตรฐาน IP ย่อมาจากคำว่า Ingress Protection  เป็นมาตรฐานการป้องกันจากของแข็ง (ฝุ่น) และของเหลว    โดยปกติแล้วหมายเลขที่แสดงระดับ IP จะมีสองหลัก  โดยหมายเลขหลักแรก หมายถึงความสามารถการป้องกันจากของแข็ง (ฝุ่น)   โดยค่าต่ำสุดคือ 1 หมายความว่า   สามารถป้องกันของแข็งที่มีขนาดใหญ่ 50 มม.  เช่น มือ  ไม่สามารถผ่านเข้าไปได้   ค่าสูงสุดคือ 6 หมายความว่า   อุปกรณ์ดังกล่าวสามารถป้องกันฝุ่นละอองได้ 2-6 ชั่วโมง   ส่วนหมายเลขหลักที่สอง  หมายถึง  ความสามารถในการป้องกันของเหลว   ค่าต่ำสุดคือ 1 หมายความว่า  สามารถป้องกันหยดน้ำที่หยดใส่ในแนวดิ่ง   ส่วนค่าสูงสุด  คือ 8   สามารถอยู่ในน้ำลึกที่มีแรงดันได้เป็นเวลานาน  ในขณะที่ค่าหมายเลข 7  หมายความว่า  อยู่ในน้ำลึกประมาณ 1 เมตรได้เป็นเวลา 30 นาที   ตัวอย่างเช่น หากอาร์เอฟไอดีแท๊ก (RFID Tag) ได้รับมาตรฐาน IP68   หมายความว่า  อาร์เอฟไอดีแท๊ก (RFID Tag)  สามาถป้องกันฝุ่น และของเหลวได้สูงสุด    ในการใช้งานอาร์เอฟไอดีแท๊ก (RFID Tag) ดังกล่าว   สามารถจมอยู่ใต้น้ำในระดับ 1-2 เมตรได้เป็นเวลานาน  โดยที่น้ำไม่เข้าไปในอาร์เอฟไอดีแท๊ก (RFID Tag) ดังกล่าวได้   สำหรับอาร์เอฟไอดีแท๊ก (RFID Tag) ที่ได้รับ IP69K  หมายถึงอาร์เอฟไอดีแท๊ก (RFID Tag)  ได้รับอันดับ IP สูงสุด  สามารถทนน้ำที่มีแรงดันสูงได้  สำหรับ K หมายถึงมาตรฐานการรับรองกระแทก

  • IK Certification

มาตรฐาน IK  หมายถึง ความสามารถของอุปกรณ์ที่จะรองรับแรงกระแทก    โดยค่าต่ำสุด คือ IK00 (ไม่มีการจัดอันดับ)  ถึง IK10    ค่า IK01   แสดงว่า  อุปกรณ์ดังกล่าวสามารถทนต่อแรงกระแทก 0.15 จูล (Joules) หรือทนต่อแรงกระแทกของลูกตุ้มที่มีน้ำหนัก 200 กรัม  กระแทกจากระยะ 7.5 ซม.     ในขณะที่ค่า IK10  อุปกรณ์ดังกล่าวสามารถทนต่อแรงกระแทก 20 จูล (Joules) หรือทนต่อแรงกระแทนของลูกตุ้มน้ำหนัก  5  กก  กระแทกจากระยะ 40 ซม.  

  • UL 94 Certification

ในการใช้งานบางกรณีอาร์เอฟไอดีแท๊ก (RFID Tag)  อาจจะใกล้กับเปลวไฟ  ดังนั้นอาร์เอฟไอดีแท๊ก (RFID Tag)  สำหรับงานประเภทนี้จำเป็นต้องได้รับมาตรฐาน UL94   มาตรฐานดังกล่าวเป็นการกำหนดว่า  วัสดุหรืออุปกรณ์ที่ได้รับมาตรฐาน UL นั้นลามไฟได้ง่ายเพียงใด   โดยมีการแบ่งเป็นลำดับดังต่อไปนี้

  • HB ติดไฟได้ช้า  ในแนวตรง   อัตราการติดไฟ น้อยกว่า 76 มม./นาที  สำหรับวัสดุที่มีความหนาน้อยกว่า 3 mm
  • V2  สามารถดับเปลวไฟด้วยตนเอง ภายใน 30 วินาที  แต่อาจมีหยดไฟได้
  • V1 สามารถดับเปลวไฟด้วยตนเอง ภายใน 30 วินาที  ไม่เป็นหยดไฟ
  • V0 สามารถดับเปลวไฟด้วยตนเอง ภายใน 10 วินาที  ไม่เป็นหยดไฟ
  • 5VB สามารถดับเปลวไฟด้วยตนเองภายใน 60 วินาที   ไม่เป็นหยดไฟ   แต่อาจจะมีรูไหม้ (Burnthrough) บนวัสดุ
  • 5VA สามารถดับเปลวไฟด้วยตนเองภายใน 60 วินาที   ไม่เป็นหยดไฟ   แต่อาจจะไม่แสดงรูไหม้ (Burnthrough) บนวัสดุ

ดังนั้นการเลือกซื้ออาร์เอฟไอดีแท๊ก (RFID Tag)  เพื่อมาใช้งานในสภาพที่ใกล้กับเปลวไฟ  จำเป็นอย่างยิ่งที่จะต้องคำนึงถึงว่า อาร์เอฟไอดีแท๊ก (RFID Tag)  ดังกล่าวติดไฟได้ง่ายเพียงใด  และทนต่อความร้อนได้สูงขนาดไหน

Source :  HID Global, The Four Most Important Certifications for Rugged RFID Tags

ข้อคิดการตัดสินใจเลือกซื้ออาร์เอฟไอดีแท๊ก (RFID Tag)

ตามที่ทราบกันอย่างแพร่หลาย ปัจจุบันมีผู้ผลิตและจำหน่ายป้ายอาร์เอฟไอดี (RFID Label) อยู่มากมาย แต่มิได้หมายความว่า ป้ายอาร์เอฟไอดี (RFID Label) ที่มีจำหน่ายอยู่ในท้องตลาดนั้น จะมีคุณภาพที่เท่าเทียมกัน จะเห็นได้ว่า ผู้ใช้งานหลายรายจะพบปัญหาว่า ป้ายอาร์เอฟไอดี (RFID Label) แต่ละอัน ได้ระยะการอ่านที่ไม่เท่ากัน ปัญหาข้างต้นทำให้ผู้ใช้งานไม่มีความมั่นใจในเทคโนโลยีอาร์เอฟไอดี (RFID System) ดังนั้นบทความนี้จะช่วยให้รายละเอียดและความเข้าใจเกี่ยวกับป้ายอาร์เอฟไอดี (RFID Label)

การผลิตป้ายอาร์เอฟไอดี (RFID Label) จะประกอบด้วบริษัทดังต่อไปนี้ คือ

1) ผู้ผลิต IC (Integrated Circuit)
2) ผู้ผลิต RFID Inlay
3) ผู้ผลิตป้ายอาร์เอฟไอดี (RFID Label)
4) ตัวจำหน่ายป้ายอาร์เอฟไอดี (RFID Label)

ต้นทุนของการทำแผ่นฟิล์มอาร์เอฟไอดี ในขั้นตอนสามารถแยกเป็นรายละเอียดได้ดังนี้

ICราคาประมาณ USD 0.029-0.04
แผ่นฟิล์มราคาประมาณ USD 0.01
ขั้นตอนการติด IC ลงบนแผ่นฟิล์มราคาประมาณ USD 0.012
เสาอากาศราคาประมาณ USD 0.01-0.052 (ขึ้นอยู่กับวัสดุที่ใช้ทำเสาอากาศ)
กาวราคาประมาณ USD 0.25
การทำเคลือบ (Coating)ราคาประมาณ USD 0.01
การตรวจสอบคุณภาพราคาประมาณ USD 0.01-0.02
ค่าเครื่องจักรและแรงงานโดย ปกติค่าใช้จ่ายนี้จะเป็นค่าใช้จ่ายคงที่ และจ่ายครั้งเดียวเช่น การซื้อเครื่องจักร หรือการจ้างงาน เมื่อทำการประมาณต่อ Tag จะประมาณ USD 0.01-0.02
ต้นทุนของแผ่นฟิล์มอาร์เอฟไอดีUSD 0.07-0.1875 ขึ้นอยู่กับปริมาณในการซื้อ

           · ผู้ผลิต IC ชิป

ปัจจัยหลักของป้ายอาร์เอฟไอดี (RFID Label) คือ IC ชิป ที่มีขนาดเล็กอยู่บริเวณตรงกลางของป้ายอาร์เอฟไอดี (RFID Label) IC ชิปนี้ทำมาจากแผ่นซิลิคอน ซึ่งจะมีเส้นผ่าศูนย์กลางประมาณ 8 นิ้ว โดยแผ่นซิลิคอนหนึ่งแผ่นจะมีราคาประมาณ USD 1200 – USD 1500 ขึ้นอยู่กับขนาดของหน่วยความจำ และส่วนต่อเชื่อมกับเสาอากาศ เป็นต้น

จาก แผ่นซิลิคอนหนึ่งแผ่น จะต้องตัดเป็น IC ขนาดเล็ก ๆ เนื่องจากแผ่นซิลิคอนจะมีขนาดเท่ากัน ดังนั้นราคาของ IC ชิป จะขึ้นอยู่กับความสามารถของผู้ผลิต IC ชิป ว่าสามารถตัดแผ่นซิลิคอนหนึ่งแผ่นได้จำนวน IC ชิปจำนวนเท่าไร โดยปกติหลังจากที่ตัดแผ่นซิลิคอนเป็น IC ชิปขนาดเล็ก ๆ ราคาของ IC แต่ละชิ้นจะมีราคาประมาณ 0.029-0.04

          · ผู้ผลิต RFID Inlay

ขั้นตอนต่อไปคือ การทำ RFID Inlay โดยการต่อเชื่อม IC ชิปดังกล่าว กับเสาอากาศ เพื่อให้สามารถทำการสื่อสารข้อมูลได้ ขั้นตอนนี้มีความสำคัญอย่างมาก หาก IC อยู่ห่างจากเสาอากาศเพียง 1 มิลลิเมตร ก็มีผลทำให้การอ่านไม่สามารถทำงานได้อย่างมีประสิทธิภาพ

ในขั้นแรก ผู้ผลิตจะทำการเตรียมแผ่นฟิล์มเพื่อใช้ติด IC และเสาอากาศ แผ่นฟิล์มดังกล่าวต้องมีความทนทานเพียงพอ ต่อการนำ RFID Inlay ดังกล่าวไปทำการขึ้นรูปเป็นป้ายอาร์เอฟไอดี (RFID Label) ในอันดับต่อไป นอกเหนือจากความคงทน ในการเลือกวัสดุเพื่อทำเป็นแผ่นฟิล์มนั้นก็มีความสำคัญอย่างมาก เนื่องจากวัสดุบางประเภทเช่น โพลีเอสเตอร์บางชนิด จะมีผลต่อไฟฟ้าสถิตซึ่งมีผลกระทบต่อการใช้งาน

นอกเหนือจากวัสดุที่ ใช้ทำแผ่นฟิล์มดังกล่าว ปัจจัยที่มีผลต่อการทำงานของป้ายอาร์เอฟไอดี (RFID Label) คือ เสาอากาศ องค์ประกอบของเสาอากาศที่มีผลต่อการอ่านมีได้แก่ การออกแบบเสาอากาศ และวัสดุที่ใช้ทำเสาอากาศ การออกแบบเสาอากาศนั้นเป็นความสามารถเฉพาะของบริษัท ดังนั้นเสาอากาศแต่ละแบบย่อมให้ผลการอ่านที่แตกต่างกัน สำหรับวัสดุที่ใช้ในการทำเสาอากาศก็ให้ผลในการอ่านที่แตกต่างกันเช่นกัน วัสดุหลักที่ใช้ในการทำป้ายอาร์เอฟไอดี (RFID Label) ได้แก่

1) อลูมิเนียม มีราคาถูกที่สุด แต่คุณภาพการอ่านอยู่ในระดับปานกลาง
2) ทองแดง มีราคาแพงที่สุด แต่อาจจะเกิดปัญหาออกไซด์บนลวดทองแดงได้
3) หมึกซิลเวอร์ มีราคาในระดับปานกลาง เมื่อเทียบกับวัสดุทั้งสองที่กล่าวมาข้างต้น

ต้นทุนของการทำแผ่นฟิล์มอาร์เอฟไอดี ในขั้นตอนสามารถแยกเป็นรายละเอียดได้ดังนี้

 ผู้ผลิตป้ายอาร์เอฟไอดี (RFID Label)

ผู้ผลิตในขั้นนี้ จะเป็นผู้นำแผ่นฟิล์มอาร์เอฟไอดีที่ได้รับในขั้นต่อก่อนหน้านั้น มาทำการแปรรูปเป็นป้ายอาร์เอฟไอดี (RFID Label) ที่พร้อมใช้งาน ซึ่งสามารถเป็นได้หลายรูปแบบ ได้แก่

o ป้ายอาร์เอฟไอดี (RFID Smart Label) โดยปกติจะมาเป็นม้วน ราคาซื้อขายของป้ายอาร์เอฟไอดีประเภทนี้จะประมาณ USD 0.095 – USD 0.255
o อาร์เอฟไอดีแท๊ก (RFID Tag) ที่มีลักษณะทนทาน อาร์เอฟไอดีแท๊ก (RFID Tag) ประเภทนี้ จะใช้งานภายนอกที่ต้องการความทนทาน เช่น ใช้งานติดกับคอนเทนเนอร์ หรือต้องติดกับพื้นผิวที่เป็นโลหะ อาร์เอฟไอดีแท๊ก (RFID Tag) ประเภทนี้จะมีราคาค่อนข้างสูงประมาณ USD 0.75-3.50 ขึ้นอยู่กับวัสดุที่ทำ และความทนทานที่ต้องการใช้งาน
o บัตรอาร์เอฟไอดี (RFID card) โดยปกติแล้วบัตรอาร์เอฟไอดี (RFID Card) ประเภทจะใช้เพื่อการชำระเงิน เช่นการชำระค่าเดินทาง เป็นต้น ราคาของบัตรอาร์เอฟไอดี (RFID Card) ประเภทนี้ ประมาณ USD 0.35-1.50
o รูปแบบพิเศษอื่น ๆ เช่น การนำฟิล์มอาร์เอฟไอดีรวมเข้าไปในหนังสือเดินทาง ต่างประเทศ

ขั้น ตอนการทำป้ายอาร์เอฟไอดี (RFID Label) ประเภทนี้ จะนำแผ่นฟิล์มอาร์เอฟไอดี (RFID Inlay) จากม้วนมาอยู่ตรงกลางของวัสดุที่เราต้องจะขึ้นรูป เช่นบัตรอาร์เอฟไอดี (RFID card) แผ่นฟิล์มอาร์เอฟไอดี (RFID Inlay) จะอยู่ตรงกลางโดยจะเคลือบด้วยพลาสติก PVC ทำขึ้นรูปเป็นบัตรอาร์เอฟไอดี ที่เป็น PVC Card


ต้นทุนของการทำป้ายอาร์เอฟไอดี (RFID Tag)สามารถแยกเป็นรายละเอียดได้ดังนี้

ต้นทุนของแผ่นฟิล์มอาร์เอฟไอดีUSD 0.07-0.1875
Backing หรือ Linerแผ่นฟิล์มที่ได้รับจะวางบน Liner โดยต้นทุนในขั้นตอนนี้ประมาณ USD 0.01
Facestockพื้นผิวป้ายอาร์เอฟไอดี (RFID Tag) อาจจะเป็นกระดาษขาว แผ่นโพลีเอสเตอร์ เป็นต้น โดยราคาจะประมาณ USD 0.005-0.02
กาว (Adhesive)ค่าใช้จ่ายในส่วนนี้ประมาณ USD 0.025
การตรวจสอบคุณภาพค่าใช้จ่ายในขั้นตอนนี้ประมาณ USD 0.005-0.03
แกนกลางของม้วนโดยปกติป้ายอาร์เอฟไอดีจะทำการบรรจุเป็นม้วน โดยจะมีกระดาษแข็งเป็นแกนกลางของม้วน ปกติค่าใช้จ่ายในส่วนนี้ประมาณ USD 0.05-0.01
ค่าแรงและเครื่องจักรค่าใช้จ่ายในขั้นตอนนี้ประมาณ USD 0.005-0.02
ต้นทุนของป้ายอาร์เอฟไอดีUSD 0.095-0.255 รวมถึง margin ของผู้ผลิตป้ายอาร์เอฟไอดี (RFID Label)

สิ่งที่ควรรู้ก่อนที่จะทำการซื้อป้ายอาร์เอฟไอดี
คำถามหลักที่ควรจะทราบก่อนที่จะทำการสั่งซื้อป้ายอาร์เอฟไอดี (RFID Label) ได้แก่

· ขนาดของป้ายอาร์เอฟไอดี (RFID Label) ที่ต้องการ
· ระยะการอ่านที่ต้องการ
· จำนวนป้ายอาร์เอฟไอดี (RFID Label) ที่ต้องการอ่านในแต่ละครั้งมีจำนวนเท่าใด และต้องอ่านนานแค่ไหน
· พื้นผิวที่จะติดป้ายอาร์เอฟไอดี (RFID Label) เป็นวัสดุอะไร เช่น โลหะ หรือไม้
· พื้นผิวที่จะติดป้ายอาร์เอฟไอดี (RFID Label) มีลักษณะอย่างไร เช่น ผิวเรียบ หรือโค้ง
· ลักษณะการติดจะเป็นการติดแบบชั่วคราว หรือถาวร
· จำเป็นต้องมีประเด็นระบบความปลอดภัย (security) เช่น เมื่อ Tag ถูกถอดออก จะต้องมีลบข้อมูลหรือทำให้ Tag หยุดทำงานหรือไม่
· จำเป็นต้องมีการพิมพ์ข้อความใดใดบน Tag หรือไม่
· สภาพแวดล้อมการใช้งาน อุณหภูมิ ความชื้น เป็นอย่างไร

สรุป

บท ความข้างต้น จะช่วยให้เกิดความเข้าใจเพิ่มมากขึ้นในการผลิตป้ายอาร์เอฟไอดี (RFID Label) รวมถึงปัจจัยต่าง ๆ ที่ควรคำนึงถึงในการตัดสินใจซื้อป้ายอาร์เอฟไอดี (RFID Label) การตัดสินใจซื้อป้ายอาร์เอฟไอดี ด้วยปัจจัยด้านราคาเพียงอย่างเดียว อาจจะแนวทางที่ถูกต้องนัก จำเป็นอย่างยิ่งที่จะต้องคำนึงถึงปัจจัยอื่น ๆ พร้อมกันไปด้วย ปัจจัยดังกล่าวได้แก่

· การออกแบบเสาอากาศ
· วัสดุที่ใช้ทำเสาอากาศ
· การต่อเชื่อมเสาอากาศกับ IC ชิป
· ความสนองในการสนองของ IC ชิป
· คุณภาพของกาวที่ใช้ในการป้ายอาร์เอฟไอดี

Source: 2011 Passive UHF RFID Tags & Smart Label Buyer’s Guide by Louis Sirico & Mark Daveport

เทคโนโลยีอาร์เอฟไอดี (RFID Technology) และบาร์โค๊ด

เทคโนโลยีอาร์เอฟไอดี (RFID) และบาร์โค้ด

ในปัจจุบันมีการกล่าวกันอย่างแพร่หลายว่า   เทคโนโลยีอาร์เอฟไอดี (RFID) จะมาแทนที่บาร์โค้ดในอนาคตอันใกล้  เนื่องจากว่า  เทคโนโลยีอาร์เอฟไอดี (RFID) มีจุดดีกว่าบาร์โค้ดอยู่หลายประการ  แต่อย่างไรก็ตามเทคโนโลยีบาร์โค้ดก็มีจุดดีอยู่มากมายที่อาร์เอฟไอดี (RFID) ไม่สามารถที่จะทำได้  ดังนั้นความคิดว่าอาร์เอฟไอดี (RFID) จะมาแทนที่บาร์โค้ด  จึงเป็นไปได้ยาก  บทนี้จะอธิบายให้เห็นถึงจุดดีและจุดเสียของเทคโนโลยีอาร์เอฟไอดี (RFID)  และบาร์โค้ด  เพื่อชี้ให้เห็นว่า  เทคโนโลยีทั้งสองต่างมีจุดดีของตนเอง  และความเหมาะสมในการใช้งานแต่ละประเภท  แตกต่างกัน

เทคโนโลยีบาร์โค้ด

บาร์โค้ดคือ การพิมพ์สัญลักษณ์เพื่อแสดงถึงข้อความต่าง ๆ   โดยปกติการพิมพ์จะพิมพ์สัญลักษณ์เป็นเส้นตรง สี่เหลี่ยมจตุรัส หรือจุด  โดยระยะห่างของแต่ละจุดจะมีความหมายอย่างใดอย่างหนึ่ง  เทคนิคในการแปลสัญลักษณ์เหล่านี้เป็นข้อความต่าง ๆ เรียกว่า  Symbology   ซึ่งจะมีลักษณะหลัก ๆ ดังต่อไปนี้

·         การถอดรหัส  เทคนิคที่ดีจำเป็นอย่างยิ่งต้องสามารถถอดรหัสได้อย่างมีประสิทธิภาพ  และไม่มีข้อผิดพลาดในการถอดรหัส

·          ความเข้มของตัวอักษร  ถ้าตัวอักษรแต่ละตัวมีความเข้มมาก  ก็สามารถที่จะแสดงถึงข้อมูลต่าง ๆ ได้มากขึ้นตามไปด้วย

·         ความสามารถในการตรวจสอบข้อผิดพลาด  ระบบ  Symbology ที่ดีจะต้องสามารถที่จะตรวจสอบความถูกต้อง  เพื่อเป็นการยืนยันว่า  ข้อมูลที่อ่านขึ้นมานั้นมีความถูกต้องแม่นยำ

o         กระบวนการอ่านบาร์โค้ด

อุปกรณ์ที่ใช้ในการอ่านบาร์โค้ดเรียกว่า  เครื่องอ่านบาร์โค้ด  (Bar Code Scanner)  เครื่องอ่านบาร์โค้ดอาศัยคลื่นแสงโดยการส่งคลื่นแสงไปยังแถบบาร์โค้ด  ในระหว่างการอ่านแถบบาร์โค้ด คลื่นแสงไม่สามารถที่จะเคลื่อนย้ายออกจากแถบบาร์โค้ดได้  ดังนั้นเมื่อมีการเพิ่มความยาวของบาร์โค้ด  ขนาดความสูงของเครื่องอ่านบาร์โค้ดก็จำเป็นต้องเพิ่มขึ้นตามไปด้วย เพื่อที่จะให้คลื่นแสงสามารถที่จะครอบคลุมแถบบาร์โค้ดทั้งหมดได้

ระหว่างการอ่าน  เครื่องอ่านจะทำการวัดลำแสงที่สะท้อนกลับมาจากแถบสีดำ  และบริเวณสีขาวของแถบบาร์โค้ด  โดยที่แถบสีดำจะดูดซับคลื่นแสง  ในขณะที่บริเวณสีขาวจะทำการสะท้อนคลื่นแสง  อุปกรณ์อิเลกทรอนิคที่เรียกว่า   Photodiode  หรือ Photocell  จะทำการแปลงคลื่นแสงที่ได้รับเป็นคลื่นไฟฟ้า  หลังจากนั้นก็จะทำการแปลงคลื่นไฟฟ้าเป็นข้อมูล  Digital  ข้อมูลที่ได้รับจะเป็นรูปรหัส   ASCII  

o         เครื่องอ่านบาร์โค้ด

ในปัจจุบันนี้  เครื่องอ่านบาร์โค้ดสามารถแบ่งได้เป็นสี่ประเภท

·         เครื่องอ่านบาร์โค้ดแบบปากกา  เครื่องอ่านบาร์โค้ดแบบนี้จะมีลักษณะคล้ายปากกโดยมีแสงอยู่ที่ปลาย  ในช่วงการอ่านแถบบาร์โค้ดต้องถูกคลื่นแสงส่องตลอดเวลา  จุดดีของเครื่องอ่านแบบนี้ คือราคาไม่แพงและมีน้ำหนักเบา   แต่จุดเสียของเครื่องอ่านแบบนี้คือ หากแถบบาร์โค้ดติดอยู่บนพื้นผิวที่ไม่เรียบ  ทำให้เครื่องอ่านไม่สามารถอ่านได้อย่างถูกต้อง

·         เครื่องอ่านบาร์โค้ดแบบเลเซอร์  เครื่องอ่านแบบนี้เป็นเครื่องอ่านที่มีการใช้แพร่หลายมากที่สุด  จุดดีของเครื่องอ่านแบบนี้  คือสามารถที่จะอ่านแถบบาร์โค้ดได้  ถึงแม้ว่าจะติดอยู่บนพื้นผิวที่ไม่เรียบ  เนื่องจากว่า  เครื่องอ่านแบบนี้จะประกอบด้วยลำแสงเลเซอร์จำนวนมาก  เลเซอร์แต่ละลำแสงสามารถที่จะอ่านแถบบาร์โค้ดได้ด้วยความเร็ว  40 – 800 ครั้งต่อวินาที  ซึ่งโดยทั่วไปแล้ว  ลำแสงบาร็โค้ดเพียงลำแสงเดียวเท่านั้น  ก็สามารถที่จะอ่านแถบบาร์โค้ดได้  จากการที่เครื่องอ่านแบบนี้สามารถที่จะอ่านแถบบาร์โค้ดได้รวดเร็ว  เครื่องอ่านแบบนี้จะนำมาใช้งานกันอย่างแพร่หลายในภาคอุตสาหกรรม   เครื่องอ่านแบบนี้สามารถที่จะทำเป็นเครื่องอ่านแบบติดตั้งอยู่กับที่  สำหรับการอ่านวัตถุที่มีการเคลื่อนที่  เช่น บนสายพานลำเลียงสินค้า เป็นต้น  ด้วยเครื่องอ่านแบบนี้ ผู้ใช้งานไม่จำเป็นต้องเคลื่อนย้ายวัตถุ  ในบางกรณีาเครื่องอ่านบาร์โค้ดแบบนี้สามารถอ่านแถบบาร์โค้ดที่อยู่ในระยะไกลถึง 9เมตรได้

·         เครื่องอ่านแบบ CCD  เครื่องอ่านบาร์โค้ดแบบนี้ใช้วิธีการจับภาพแถบบาร์โค้ด  หลังจากการจับภาพของแถบบาร์โค้ด  เครื่องอ่านก็จะทำการปรับภาพดังกล่าว  เป็นข้อมูลที่เป็นแบบดิจิตอลเหมือนเช่นบาร์โค้ดแบบเลเซอร์  จุดเสียของเครื่องอ่านบาร์โค้ดแบบนี้ คือ เครื่องอ่านแบบนี้ไม่สามารถอ่านแถบบาร์โค้ดที่มีความยาวมากได้  เนื่องจากข้อจำกัดในการจับภาพ

·         เครื่องอ่านแบบกล้อง  กล้องขนาดเล็กที่ซ่อนอยู่ในเครื่องอ่าน  กล้องขนาดเล็กนี้จะทำการจับภาพบาร์โค้ด  และทำการประมวลผล  แต่เครื่องอ่านแบบนี้จะอ่อนไหวต่อคุณภาพของแถบบาร์โค้ดอย่างมาก  เช่น  แถบบาร์โค้ดควรจะมีความแตกต่างสีขาวและดำอย่างชัดเจน  ห้ามมีจุดดำอื่นใดบนแถบบาร์โค้ด   

o         ประโยชน์ของเทคโนโลยีบาร์โค้ด

·         รวดเร็วและแม่นยำในการเก็บข้อมูล  เทคโนโลยีบาร์โค้ดทำให้การเก็บข้อมูลเป็นไปอย่างอัตโนมัติ   การอ่านข้อมูลโดยเครื่องอ่านบาร์โค้ดทำให้มีความแม่นยำ  จากการศึกษาพบว่า  ข้อผิดพลาดมีเพียงหนึ่งในสามล้านครั้ง 

  • การเพิ่มประสิทธิภาพในการทำงาน ข้อมูลที่ได้รับจากเครื่องอ่านบาร์โค้ดสามารถส่งต่อให้กับระบบการทำงาน  เพื่อให้กระบวนการทำงานสามารถดำเนินการได้อย่างอัตโนมัติ   เช่นระบบเข้า-ออกสำนักงานของพนักงาน

·         ลดค่าใช้จ่ายในการทำงาน   การเก็บข้อมูลด้วยเทคโนโลยีบาร์โค้ดทำให้ลดค่าใช้จ่ายในการเก็บข้อมูล  เนื่องจาการเก็บข้อมูลที่ผิดพลาด  เป็นต้น

o         ข้อจำกัดของเทคโนโลยีบาร์โค้ด

อย่างไรก็ตามเทคโนโลยีบาร์โค้ดก็มีข้อจำกัดของตนเองอยู่  ข้อจำกัดหลัก ๆ ได้แก่

·         เสียหายง่าย  แถบบาร์โค้ดเสียหายได้ง่าย  เพียงแค่มีรอยเปื้อนสกปรก  แถบสี  หรือสีจางไปเมื่อถูกแสงแดด หรือความชื้น

·         เครื่องอ่านบาร์โค้ดมีข้อจำกัดในการทำงาน   เมื่อนำเครื่องอ่านบาร์โค้ดไปใช้งานในสภาพแวดล้อมที่เปียกชื้น  คลื่นแสงที่ใช้ในการอ่านจะถูกหักเหง่าย  เมื่อแถบบาร์โค้ดมีการเปียกชื้น  ด้วยสาเหตุดังกล่าวทำให้การอ่านข้อมูลในแถบบาร์โค้ดผิดพลาดได้

·         ขณะการอ่านแถบบาร์โค้ด  จำเป็นอย่างยิ่งที่จะต้องเห็นแถบบาร์โค้ด   หากแถบบาร์โค้ดถูกปิดบัง  ทำให้ไม่สามารถที่จะอ่านข้อมูลได้

·         ความเร็ว  เครื่องอ่านบาร์โค้ดไม่สามารถที่จะอ่านแถบบาร์โค้ดที่เคลื่อนที่ด้วยความรวดเร็ว  ดังนั้นหากแถบบาร์โค้ดติดอยู่บนวัตถุที่เคลื่อนไหวด้วยความรวดเร็ว  จะมีผลทำให้ความแม่นยำในการอ่านต่ำลง

o         ข้อได้เปรียบของเทคโนโลยีอาร์เอฟไอดี (RFID) เมื่อเทียบกับเทคโนโลยีบาร์โค้ด

จากที่มีการกล่าวกันอย่างแพร่หลาย  เทคโนโลยีอาร์เอฟไอดี (RFID) มีความเป็นไปได้ที่จะนำมาใช้แทนบาร์โค้ด   จุดเด่นหลัก ๆ ที่ทำให้มีการคาดการณ์ว่า  เทคโนโลยีอาร์เอฟไอดี (RFID) จะมาทดแทนบาร์โค้ด สามารถสรุปเป็นประเด็นต่าง ๆ ได้ดังต่อไปนี้

·         สามารถอ่านข้อมูลที่เปลี่ยนแปลงอยู่เสมอ  ข้อมูลที่บันทึกในอาร์เอฟไอดี  Tag   (RFID Tag) สามารถที่จะบันทึกข้อมูลใหม่ลงไปได้  ในขณะที่แถบบาร์โค้ดไม่สามารถที่จะทำการปรับเปลี่ยนข้อมูลได้   โดยปกติแล้วอาร์เอฟไอดีแท๊ก (RFID Tag) สามารถที่จะบันทึกข้อมูลได้มากถึง 100,000  ครั้ง  ซึ่งความสามารถนี้มีความจำเป็นอย่างยิ่ง  เมื่อมีการใช้อาร์เอฟไอดีแท๊ก (  RFID Tag)  เพื่อบันทึกข้อมูลบางอย่างที่มิได้บันทึกไว้ในครั้งแรก  ตัวอย่างเช่น การนำอาร์เอฟไอดีแท๊ก (RFID Tag)  มาใช้ในส่วนของสายงานผลิต  เมื่อสินค้าเคลื่อนย้ายไปทีละขั้นตอนการผลิต  ก็จะทำการบันทึกข้อมูลลงในอาร์เอฟไอดีแท๊ก (RFID Tag)  เพื่อที่จะทราบว่า  วัตถุหรือสินค้าดังกล่าวผ่านกระบวนการผลิตขั้นใดมาบ้าง  เมื่อสิ้นสุดกระบวนการผลิตสามารถที่จะนำอาร์เอฟไอดีแท๊ก (RFID Tag)  ดังกล่าวมาวิเคราะห์ต่อไปได้ว่า  แต่ละขั้นตอนการผลิตใช้เวลามากน้อยเพียงใด  และขั้นตอนใดที่ใช้เวลามากเกินไป   หรือเป็นการยืนยันว่า  วัตถุดังกล่าวผ่านมาทุกกระบวนการผลิตหรือไม่

·         การอ่านโดยไม่จำเป็นต้องมองเห็น  โดยทั่วไปแล้วอาร์เอฟไอดีแท๊ก (RFID Tag)  ไม่จำเป็นต้องมองเห็นก็สามารถที่จะส่งข้อมูล  ซึ่งแตกต่างจากบาร์โค้ดอย่างชัดเจน  ที่จำเป็นต้องมองเห็นเท่านั้นเพื่อทำให้สามารถส่งข้อมูลได้  ตัวอย่างเช่น  หากอาร์เอฟไอดีแท๊ก (RFID Tag)  ติดอยู่กับสินค้าที่บรรจุอยู่ในบรรจุภัณฑ์ที่มิได้ดูดซับ  หรือสะท้อนคลื่นวิทยุ  เครื่องอ่านอาร์เอฟไอดี (RFID Reader) ก็สามารถที่จะอ่านข้อมูลจากอาร์เอฟไอดีแท๊ก (RFID  Tag) นั้นได้  โดยมิจำเป็นต้องมองเห็นอาร์เอฟไอดีแท๊ก (RFID Tag)   แต่อย่างไรก็ตาม  ในบางสถานการณ์คุณลักษณะนี้ก็ไม่สามารถใช้งานได้อย่างเต็มที่  หากมีการนำอาร์เอฟไอดีแท๊ก (RFID Tag) ไปติดอยู่บนวัสดุที่ดูดซับ หรือสะท้อนคลื่นวิทยุ  เช่น โลหะ เป็นต้น   

·         ระยะการอ่านที่ไกล  โดยปกติแล้วเครื่องอ่านอาร์เอฟไอดี (RFID Reader) สามารถที่จะอ่านข้อมูลจากอาร์เอฟไอดีแท๊ก (RF ID Tag)  ได้ในระยะที่ไกลกว่า เครื่องอ่านบาร์โค้ด  ตัวอย่างเช่น  เครื่องอ่านอาร์เอฟไอดี (RFID Reader) คลื่นความถี่  UHF  จะสามารถอ่านอาร์เอฟไอดีแท๊ก (RFID Tag) ได้ไกลถึง  4-5 เมตรในสภาพแวดล้อมปกติ  หากพูดถึงอาร์เอฟไอดีแบบ  Active (Active RFID) ระยะการอ่านก็จะไกลยิ่งขึ้นไปอีก  ซึ่งในบางกรณีสามารถอ่านได้ไกลถึง  30  เมตร แต่เทคโนโลยีบาร์โค้ดนั้น จะอ่านข้อมูลโดยคลื่นแสง  ดังนั้นระยะการอ่านจึงจำกัดอยู่ในระยะที่คลื่นแสงไปถึง 

·         ความสามารถในการบันทึกมีมากกว่าบาร์โค้ด  อาร์เอฟไอดีแท๊ก (RFID Tag) สามารถบันทึกข้อมูลได้มากกว่าบาร์โค้ด  โดยเฉพาะอย่างยิ่ง  Active Tag  สามารถที่จะบรรจุข้อมูลได้มากกว่าบาร์โค้ดหลายเท่าตัว

·         ความสามารถในการอ่านข้อมูลจากอาร์เอฟไอดีแท๊ก (RFID Tag) หลาย Tag  พร้อมกัน  เครื่องอ่านอาร์เอฟไอดี (RFID Reader) สามารถอ่านข้อมูลจากอาร์เอฟไอดีแท๊ก (RFID  Tag)  มากกว่าหนึ่ง  Tag  ในขณะเดียวกัน  ซึ่งความสามารถนี้เรียกว่า  Anti-Collision ซึ่งความสามารถนี้บาร์โค้ดไม่สามารถที่จะทำได้

·         ความคงทนมากกว่า  โดยปกติแล้ว  อาร์เอฟไอดีแท๊ก (RFID Tag) จะทนทานมากกว่าบาร์โค้ด  อาร์เอฟไอดีแท๊ก (RFID Tag) สามารถทำงานได้ในสภาพที่เปียกชื้น หรือการทำงานที่มีการเคลื่อนไหวอยู่เสมอ  ในสภาพการทำงานลักษณะนี้  บาร์โค้ดไม่สามารถที่จะทำงานได้อย่างมีประสิทธิภาพ  และบาร์โค้ดก็มีโอกาสที่จะเสียหายง่าย  เช่นการนำไปใช้งานในสภาพเปียกชื้น เป็นต้น

·         อาร์เอฟไอดีแท๊ก (RFID Tag) สามารถนำมาใช้งานในลักษณะที่ซับซ้อนมากขึ้น  ซึ่งการใช้งานลักษณะนี้มิใช่เพียงแค่การเก็บข้อมูล แต่อาร์เอฟไอดีแท๊ก (RFID Tag)  ยังสามารถบันทึกข้อมูลลงไปได้อีกด้วย  ซึ่งการทำงานในลักษณะนี้บาร์โค้ดไม่สามารถที่จะทำได้ ตัวอย่างเช่นการใช้งานของ  Active RFID Tag  ที่ต้องมีการบันทึกหมายเลขเอกสารในขนส่ง  เพื่อให้ระบบการทำงานเป็นไร้เอกสาร  ในส่วนนี้บาร์โค้ดจะทำไม่ได้อย่างแน่นอน  เพราะบาร์โค้ดทำหน้าที่ในการบันทึกข้อมูลที่ไม่สามารถเปลี่ยนแปลงได้

จากข้อดีที่กล่าวมาข้างต้น  มีการนำเทคโนโลยีอาร์เอฟไอดี (RFID) ในกิจกรรมหลายส่วน  เมื่อมีการเปรียบเทียบการทำงานของเทคโนโลยีบาร์โค้ด  จะเห็นว่า  การนำเทคโนโลยีอาร์เอฟไอดี (RFID System) สะท้อนให้เห็นถึงประโยชน์หลายประการ ดังเช่นตารางด้านล่าง  จากผลการศึกษาของ FKI Logistex

ข้อดีของบาร์โค้ดเมื่อเทียบกับเทคโนโลยีอาร์เอฟไอดี (RFID)

ถึงแม้ว่า  เทคโนโลยีอาร์เอฟไอดี (RFID) จะมีจุดเด่นมากกว่าบาร์โค้ดในหลายประการ  แต่เทคโนโลยีบาร์โค้ดก็มีจุดเด่นเป็นของตนเอง  จุดเด่นของเทคโนโลยีบาร์โค้ด  สามารถสรุปได้ดังต่อไปนี้

·         ราคาถูก  เป็นที่ทราบกันดีว่า ราคาของบาร์โค้ดถูกกว่าอาร์เอฟไอดีแท๊ก (RFID Tag) มาก  นอกเหนือจากราคาอาร์เอฟไอดีแท๊ก (RFID Tag) แล้ว ราคาเครื่องอ่านบาร์โค้ดก็ถูกกว่าเครื่องอ่านอาร์เอฟไอดี   (RFID Reader)

·         ในบางกรณีความสามารถในการอ่านของบาร์โค้ดก็มีความใกล้เคียงกับอาร์เอฟไอดี (RFID) ในการใช้งานบางครั้งบาร์โค้ดสามารถให้ความแม่นยำได้ถึง 90 – 98%  จากความแม่นยำในระดับนี้  ทำให้เกิดความคุ้มทุนค่อนยาก  เนื่องจากหากเทคโนโลยีอาร์เอฟไอดี (RFID) ไม่สามารถให้ความแม่นยำได้มากขึ้นอีก 10% ความคุ้มทุนก็จะไม่เกิดขึ้นได้

·         ไม่มีผลต่อวัสดุที่ใช้งาน  บาร์โค้ดใช้งานได้กับวัสดุเกือบทุกชนิด  ซึ่งต่างจากอาร์เอฟไอดี (RFID) ที่ไม่สามารถใช้งานได้ในวัสดุบางประเภท

·         ไม่มีข้อจำกัดทางด้านกฏหมาย  บาร์โค้ดทำงานโดยการใช้คลื่นแสง  ซึ่งไม่มีข้อจำกัดทางด้านกฏหมาย  ต่างจากเทคโนโลยีอาร์เอฟไอดี (RFID) ที่ใช้คลื่นวิทยุ  การใช้คลื่นวิทยุในแต่ละประเทศยังมีข้อจำกัดทางด้านกฏหมายที่จำเป็นต้องคำนึงถึงอยู่อย่างมาก  คลื่นความถี่ที่ใช้ได้ในประเทศหนึ่ง  อาจไม่สามารถที่จะใช้งานได้ในบางประเทศก็เป็นไปได้  แต่อย่างไรก็ตามในปัจจุบันก็มีความพยายามในหลายประเทศที่จะทำให้การใช้คลื่นวิทยุเพื่อวัตถุประสงค์ด้านอาร์เอฟไอดี (RFID) มีความเป็นมาตรฐานมากขึ้น

·         บาร์โค้ดเป็นเทคโนโลยีที่มีการใช้งานอย่างแพร่หลาย   บาร์โค้ดมีการใช้งานมาอย่างน้อย  30 ปี 

ความเป็นไปได้ที่อาร์เอฟไอดี (RFID) จะทดแทนบาร์โค้ด

จากที่มีการกล่าวจุดดี  และข้อจำกัดของเทคโนโลยีอาร์เอฟไอดี (RFID) และบาร์โค้ด   ทำให้โอกาสที่จะนำเทคโนโลยีอาร์เอฟไอดี (RFID) จะมาทดแทนบาร์โค้ดนั้นเป็นไปได้ยากมาก  สาเหตุหลักที่ทำให้การทดแทนนี้ไม่สามารถที่จะเป็นไปได้  ได้แก่

·         หากจะมีการนำอาร์เอฟไอดี (RFID) มาแทนบาร์โค้ดได้  จำเป็นอย่างยิ่งที่อาร์เอฟไอดี (RFID) ต้องสามารถใช้งานได้กับวัสดุทุกประเภทเหมือนกับที่บาร์โค้ดทำได้  การที่จะทำให้อาร์เอฟไอดี (RFID) ใช้งานได้กับวัสดุทุกประเภทนั้น จำเป็นอย่างยิ่งที่จะมีต้องมีความเป็นไปได้ในแง่เศรษฐกิจ  และในแง่สังคม

·         มีการคาดการณ์ว่า  หากจะทำให้อาร์เอฟไอดี (RFID) สามารถทดแทนบาร์โค้ดได้จำเป็นอย่างยิ่งที่ราคาของอาร์เอฟไอดีแท๊ก (RFID Tag)  ต้องต่ำกว่า 2 บาท หรือต่ำกว่านั้น   นอกเหนือจากราคาอาร์เอฟไอดีแท๊ก (RFID Tag) แล้ว ราคาของเครื่องอ่านอาร์เอฟไอดี (RFID Reader) ก็ต้องถูกลงด้วย   แต่อย่างไรก็ตามการที่จะทำให้ราคาอาร์เอฟไอดีแท๊ก (RFID Tag)  ถูกลง  ด้วยกระบวนการผลิตในปัจจุบันคงเป็นไปได้ยาก  กระบวนการผลิตต้องมีการเปลี่ยนแปลงใหม่ หรือจำเป็นต้องตัดกระบวนการผลิตออกบางขั้นตอน  มีการคาดการณ์ว่า  การที่จะทำให้อาร์เอฟไอดีแท๊ก (RFID  Tag) ราคาถูกได้ในระดับที่ต้องการ  อาจจะต้องใช้เวลาประมาณ  5 ถึง 10ปีข้างหน้า

·         การกำหนดมาตรฐานการใช้คลื่นวิทยุเพื่อเทคโนโลยีอาร์เอฟไอดี (RFID) จากที่ทราบกันว่า  อาร์เอฟไอดี (RFID) ใช้คลื่นวิทยุในการทำงาน  ดังนั้น จำเป็นอย่างยิ่งที่จะต้องให้ทุกประเทศมีมาตรฐานการใช้คลื่นวิทยุเพื่อเทคโนโลยีเหมือนกัน  โดยเฉพาะอย่างยิ่งคลื่นความถี่ในช่วง  UHF   ซึ่งแต่ละประเทศมีการใช้งานที่ในช่วงคลื่นที่แตกต่างกัน

สรุป 

จากข้อจำกัดและข้อได้เปรียบของเทคโนโลยีอาร์เอฟไอดี (RFID)  และเทคโนโลยีบาร์โค้ด  จะเห็นว่า  ในระยะแรกการนำเทคโนโลยีอาร์เอฟไอดี (RFID) มาใช้จะเป็นใสรูปแบบ  Dual Technology  กล่าวคือ  เป็นการนำสองเทคโนโลยีคือบาร์โค้ด  และอาร์เอฟไอดี (RFID) มาใช้ควบคู่กัน ตามการศึกษาตารางด้านล่าง  จะเห็นว่า  ในช่วงแรกที่ทำการทดสอบ  และความคุ้มทุนยังคงใช้เทคโนโลยีอาร์เอฟไอดี (RFID) เพียงอย่างเดียว  แต่เมื่อนำเทคโนโลยีอาร์เอฟไอดี (RFID) มาสู่ปฏิบัติจริง  จะเป็นการใช้สองเทคโนโลยี  แต่เมื่อเทคโนโลยีอาร์เอฟไอดี (RFID) ไปสู่การใช้จริง  ในช่วงแรกยังเป็นการใช้สองเทคโนโลยีควบคู่กันไป   จนเทคโนโลยีอาร์เอฟไอดีมีการพัฒนาในด้านต่าง  ๆ 

ข้อจำกัดของเทคโนโลยีอาร์เอฟไอดี

ข้อจำกัดของเทคโนโลยีอาร์เอฟไอดี (RFID)

ถึงแม้ว่า  เทคโนโลยีอาร์เอฟไอดี (RFID) จะมีจุดเด่นหลายประการตามที่กล่าวข้างต้น  อย่างไรก็ตาม  การนำเทคโนโลยีนี้ไปใช้ก็มีข้อจำกัดอยู่หลายประการ  เนื่องจากว่า  เทคโนโลยีอาร์เอฟไอดี (RFID) ใช้คลื่นวิทยุในการสื่อสาร  ดังนั้นในการนำมาใช้งานย่อมมีข้อจำกัดต่าง ๆ ตามลักษณะเฉพาะของคลื่นวิทยุ  ซึ่งสามารถแยกพิจารณาเป็นประเด็นต่าง ๆ ได้ดังต่อไปนี้

·         ด้านอาร์เอฟไอดีแท๊ก (RFID Tag) 

o    วัตถุที่นำอาร์เอฟไอดีแท๊ก (RFID Tag)  ไปใช้งาน  วัสดุต่างชนิดกันย่อมมีผลต่อการนำเทคโนโลยีนี้มาใช้ต่างกัน  หากระบบอาร์เอฟไอดี (RFID) นั้นใช้คลื่น  UHF หรือ  Microwave  และนำไปใช้กับวัตถุที่มีลักษณะดูดซับ  หรือสะท้อนคลื่นวิทยุ  เช่น น้ำ หรือวัสดุที่เป็นโลหะ  จะมีผลให้ความสามารถในการอ่านย่อมลดลงอย่างแน่นอน

o    จำนวนของอาร์เอฟไอดีแท๊ก (RFID Tag)  ในการอ่านแต่ละครั้ง  ถึงแม้ว่า เทคโนโลยีนี้สามารถที่จะอ่านอาร์เอฟไอดีแท๊ก (RFID Tag)  มากกว่าหนึ่งอาร์เอฟไอดีแท๊ก (RFID Tag)  ในขณะเดียวกัน  แต่ถึงอย่างไรก็ตาม  การอ่านอาร์เอฟไอดีแท๊ก (RFID Tag)  ในลักษณะนี้ก็มีข้อจำกัดในแง่ของจำนวน  โดยเฉลี่ยแล้วเครื่องอ่านอาร์เอฟไอดี (RFID Reader) สามารถอ่านอาร์เอฟไอดีแท๊ก (RFID Tag)  ได้พร้อมกัน 50 Tags  ในเวลาเดียวกัน   

·         ด้านเครื่องอ่านอาร์เอฟไอดี (RFID Reader)

o    ระบบอาร์เอฟไอดี (RFID) ที่ออกแบบขึ้นมานั้น  ในหลายกรณีที่จำเป็นต้องใช้เครื่องอ่านอาร์เอฟไอดี (RFID Reader) มากกว่าหนึ่งตัว  ในการติดตั้งเครื่องอ่าน (RFID Reader) มากกว่าหนึ่งเครื่องนั้น  ประเด็นที่จำเป็นต้องคำนึงถึงมากที่สุด  การรบกวนกันของเครื่องอ่านอาร์เอฟไอดี (RFID Reader) ทั้งหลายหากออกแบบไม่ถูกต้องมีความเป็นไปได้อย่างมากที่เครื่องอ่านอาร์เอฟไอดี (RFID Reader) ทั้งสองตัวอาจจะรบกวนกันเอง  หรืออาจเกิดสถานะการณ์ที่อาร์เอฟไอดีแท๊ก (RFID Tag)   ถูกอ่านมากกว่าหนึ่งเครื่องทำให้ข้อมูลส่งเข้าสู่ระบบไม่ถูกต้อง

o    ข้อจำกัดด้านกำลังส่ง  เป็นที่ทราบกันว่า ความสามารถในการอ่านของเครื่องอ่านอาร์เอฟไอดี (RFID Reader) มีความสัมพันธ์กับกำลังส่งอย่างหลีกเลี่ยงไม่ได้  อย่างไรก็ตามแต่ละประเทศมีการกำหนดกำลังส่งของเครื่องอ่านอาร์เอฟไอดี (RFID Reader) ที่แตกต่างกัน  ดังนั้นเมื่อนำเครื่องอ่านอาร์เอฟไอดี (RFID Reader) ไปใช้ในประเทศอื่นย่อมให้ผลการอ่านที่แตกต่างกัน

·         ด้านสภาพแวดล้อม  

o    เป็นที่ทราบกันดีว่าเทคโนโลยีอาร์เอฟไอดี (RFID) มีอ่อนไหวต่อโลหะและของเหลว  หากนำเทคโนโลยีนี้ไปใช้งานในสภาพแวดล้อมเหล่านี้  ย่อมมีผลกระทบต่อความสามารถในการอ่านอย่างหลีกเลี่ยงไม่ได้  อาจมีผลทำให้ความสามารถในการอ่านลดต่ำลง  หากจำเป็นต้องนำเครื่องอ่านอาร์เอฟไอดี (RFID Reader) ไปใช้ในสภาพเช่นนี้  ระยะห่างระหว่างเครื่องอ่านและอาร์เอฟไอดีแท๊ก (RFID Tag) อาจจะต้องสั้นกว่าที่ควรจะเป็น  นอกเหนือจากสภาพแวดล้อมในการใช้งานแล้ว  การนำเทคโนโลยีอาร์เอฟไอดี (RFID) ไปใช้ในสภาพแวดล้อมที่มีคนอยู่มาก  ก็มีผลต่อการอ่านเช่นกัน  เนื่องจากว่าร่างกายของคนประกอบด้วยของเหลว  ซึ่งมีผลต่อการอ่านอย่างหลีกเลี่ยงไม่ได้

สรุป

จากที่กล่าวมาข้างต้นจะเห็นได้ว่า   เทคโนโลยีอาร์เอฟไอดี (RFID) มีประโยชน์อย่างมากมาย  ขณะเดียวกันก็มีข้อจำกัดในหลายประเด็นด้วยเช่นกัน  ดังนั้นการนำเทคโนโลยีนี้ไปใช้จำเป็นอย่างยิ่งที่จะมีการออกแบบอย่างถูกต้อง  เพื่อให้สามารถนำเทคโนโลยีนี้มาใช้ได้อย่างเต็มที่

จุดเด่นและข้อจำกัดของเทคโนโลยีอาร์เอฟไอดี (RFID Technoogy)

จุดเด่นของเทคโนโลยีอาร์เอฟไอดี (RFID)

เมื่อมีการกล่าวถึงเทคโนโลยีอาร์เอฟไอดี (RFID)  ย่อมหลีกเลี่ยงไม่ได้ที่จะกล่าวถึงเทคโนโลยีบาร์โค้ด  ซึ่งเป็นหนึ่งในเทคโนโลยีที่ใช้ในการระบุสิ่งต่าง ๆ  อย่างไรก็ตามเทคโนโลยีทั้งสองต่างก็มีจุดเด่นของตนเอง  ในกรณีของเทคโนโลยีอาร์เอฟไอดี (RFID) นั้น  จุดเด่นของเทคโนโลยีอาร์เอฟไอดี (RFID) สามารถที่จะแบ่งได้เป็นประเด็นต่าง ๆ ต่อไปนี้

o         การไม่ต้องสัมผัส (Contactless)

ลักษณะพื้นฐานอันหนึ่งของเทคโนโลยีอาร์เอฟไอดี (RFID) คือการที่อาร์เอฟไอดีแท๊ก (RFID Tag)  ไม่จำเป็นต้องสัมผัสกับเครื่องอ่านอาร์เอฟไอดี  (RFID Reader) ก็สามารถที่จะส่งข้อมูลได้  ด้วยจุดเด่นนี้   ทำให้เทคโนโลยีนี้มีข้อได้เปรียบหลายประการ  ได้แก่

oเครื่องอ่านอาร์เอฟไอดี (RFID Reader) ไม่มีการสึกหรอ  เนื่องจากไม่มีการสัมผัสระหว่างระหว่างอาร์เอฟไอดีแท๊ก (RFID Tag)  กับเครื่องอ่านอาร์เอฟไอดี (RFID Reader)  ดังนั้นการสึกหรอของอุปกรณ์ซึ่งโดยปกติจะเกิดขึ้นจากการสัมผัสจะไม่เกิดขึ้น

oความเร็วในการทำงานไม่ลดลง  ในการทำงานปัจจุบันจะเห็นได้ว่า  หากใช้เทคโนโลยีที่ต้องมีการสัมผัส  บ่อยครั้งที่ทำให้กระบวนการทำงานช้าลง   ตัวอย่างเช่น การทำงานบนสายพาน  ซึ่งอุปกรณ์  หรือสินค้ามีการเคลื่อนไหวอยู่ตลอด  การอ่านหรือบันทึกข้อมูลโดยการสัมผัสไม่สามารถที่จะเป็นไปได้

oความสามารถในการอ่านอาร์เอฟไอดีแท๊ก (RFID Tag)  พร้อมกันหลายอาร์เอฟไอดีแท๊ก (RFID Tag)  ในเวลาเดียวกัน  ทำให้การทำงานในลักษณะที่เป็นอัตโนมัติสามารถที่จะปฏิบัติได้ง่าย  ในทางตรงกันข้ามหากใช้เทคโนโลยีแบบสัมผัสในการอ่านและบันทึกข้อมูล  การที่จะต้องอ่านข้อมูลจากอาร์เอฟไอดีแท๊ก (RFID Tag)  หลายอาร์เอฟไอดีแท๊ก (RFID Tag)  พร้อมกันไม่สามารถที่จะเป็นไปได้

o         ความสามารถในการบันทึกข้อมูล (Writable)

ในปัจจุบันอาร์เอฟไอดีแท๊ก (RFID Tag) สามารถบันทึกข้อมูลได้มากถึง  100,000  ครั้งหรือมากกว่า อาร์เอฟไอดีแท๊ก (RFID Tag)  ประเภทนี้มีการใช้งานที่เฉพาะเจาะจงของตัวเอง  เช่น  การใช้งานในสภาพแวดล้อมที่ไม่สามารถเรียกข้อมูลจากฐานข้อมูลได้  ได้แก่ ระบบบัตรอาหาร  ในบางกรณีจะเลือกใช้การบันทึกข้อมูลแทนที่จะใช้ระบบเดินสายสัญญาณ ทุกครั้งที่นำบัตรอาร์เอฟไอดี (RFID Card)  ไปซื้ออาหาร  มูลค่าล่าสุดที่เหลืออยู่ก็จะถูกบันทึกลงไปในบัตร  อย่างไรก็ตาม  ในการใช้งานที่ใช้วิธีการบันทึกข้อมูลลงไปในบัตรก็มีข้อจำกัดอยู่ในหลายประเด็น  ได้แก่

oความคุ้มทุนในการนำอาร์เอฟไอดีแท๊ก (RFID Tag)  กลับมาใช้ใหม่  เนื่องจากการนำกลับมาใช้ใหม่  จำเป็นต้องเกี่ยวข้องกับกระบวนการเพิ่มเติมขึ้นมา  นั้นคือ การนำอาร์เอฟไอดีแท๊ก (RFID Tag)  กลับมาใช้ใหม่   ในการจัดเก็บอาร์เอฟไอดีแท๊ก (RFID Tag) เหล่านี้เพื่อนำกลับมาใช้ใหม่  อาจจะต้องใช้กำลังคนมาก  ซึ่งอาจจะทำให้ไม่คุ้มทุน

oความปลอดภัย  จำเป็นอย่างยิ่งที่ต้องมีระบบมาควบคุมการบันทึกข้อมูลลงไปในอาร์เอฟไอดีแท๊ก (RFID Tag)  เพื่อที่จะเป็นการป้องกันว่า  ไม่ได้มีการลักลอบการเขียนข้อมูลใหม่ทับลงไปใน  โดยเฉพาะการนำมาใช้ในลักษณะ  E Payment  นอกเหนือจากนั้นทางบริษัทยังจำเป็นต้องมีระบบการควบคุมเพื่อป้องกันไม่ให้อาร์เอฟไอดีแท๊ก (RFID Tag) ที่มีข้อมูลสำคัญ  ถูกส่งออกไปนอกหน่วยงานของตน

oการทำงานที่ใช้เวลามากขึ้น  การบันทึกข้อมูลลงในอาร์เอฟไอดีแท๊ก (RFID Tag)  จะใช้เวลามากกว่าการอ่านข้อมูล  ดังนั้นเมื่อการทำงานจำเป็นต้องบันทึกข้อมูลลงไปในอาร์เอฟไอดีแท๊ก  (RFID Tag)  การทำงานต้องใช้เวลามากขึ้นกว่าการทำงานที่อาศัยการอ่านเพียงอย่างเดียว

แต่อย่างไรก็ตาม  ในการทำงานบางครั้งก็จำเป็นต้องใช้ความสามารถในการบันทึกข้อมูล  ตัวอย่างเช่น  การตรวจสอบคุณภาพในกระบวนการบรรจุยาลงไปในขวด  ในขั้นแรกขวดเหล่านั้นจะติดอาร์เอฟไอดีแท๊ก (RFID Tag) ที่ สามารถบันทึกข้อมูลได้  ก่อนที่จะนำขวดเหล่านี้มาใช้งาน  ขวดเหล่านี้  ก็จะต้องทำการทำความสะอาดก่อน  ในการทำความสะอาด  ขวดดังกล่าวก็จะทำการล้างด้วยน้ำร้อน  ต่อจากนั้นผ่านกระบวนการฆ่าเชื้อ  และทำให้แห้ง  นอกจากนั้นยังจะต้องผ่านกระบวนการต่าง ๆ ก่อนที่จะนำขวดดังกล่าวไปบรรจุยา  จากกระบวนข้างต้นที่ระบุมา ดังนั้นทุกขั้นตอนที่ขวดเหล่านั้นมาใช้บรรจุยา  จำเป็นอย่างยิ่งที่จะต้องทำการบันทึกข้อมูลลงไปในอาร์เอฟไอดีแท๊ก (RFID Tag) เพื่อเป็นการควบคุมกระบวนการทำงานว่า  ขวดหรือบรรจุภัณฑ์ดังกล่าวได้ผ่านกระบวนการทำความสะอาดครบทุกขั้นตอน   

o         ความสามารถในการอ่านโดยไม่ต้องเห็นอาร์เอฟไอดีแท๊ก  RFID Tag

ความสามารถนี้เป็นจุดเด่นที่สำคัญของเทคโนโลยีอาร์เอฟไอดี (RFID) เครื่องอ่านอาร์เอฟไอดี (RFID Reader) สามารถที่จะอ่านอาร์เอฟไอดีแท๊ก (RFID Tag)  ได้ถึงแม้ว่าอาร์เอฟไอดีแท๊ก (RFID Tag)  จะติดอยู่ภายในตัวสินค้า  (หากสินค้าไม่ประกอบด้วยวัสดุที่ดูดซับคลื่นวิทยุ)  ตัวอย่างเช่น  หากอาร์เอฟไอดีแท๊ก (RFID Tag)   อยู่ในกล่องกระดาษ  เครื่องอ่านอาร์เอฟไอดี (RFID Reader) สามารถที่จะอ่านทะลุกล่องเข้าไปได้   ด้วยความสามารถนี้  ทำให้ การตรวจสอบสินค้าทำได้ง่ายและรวดเร็วมากขึ้น  เนื่องจากไม่จำเป็นต้องเปิดกล่องสินค้า   

จากความสามารถประการนี้  ทำให้มีการกังวลว่า  ความลับส่วนบุคคล  ในกรณีที่บุคคลนั้น  มีอาร์เอฟไอดีแท๊ก (RFID Tag)  อยู่ในตัว  และถูกอ่านโดยเครื่องอ่านอาร์เอฟไอดี (RFID Reader) แบบไม่รู้ตัว  อย่างไรก็ตามจากการที่กล่าวในขั้นต้น  การที่จะอ่านอาร์เอฟไอดีแท๊ก (RFID Tag) มีข้อจำกัดมีทางด้านเทคโนโลยีอยู่หลายประการ  ตัวอย่างเช่น  การอ่านบางครั้งเครื่องอ่านอาร์เอฟไอดี (RFID Reader) จำเป็นต้องเห็นอาร์เอฟไอดีแท๊ก (RFID Tag)  หรือ อาร์เอฟไอดีแท๊ก (RFID Tag)  ต้องอยู่ในมุมที่เครื่องอ่านอาร์เอฟไอดี (RFID Reader) สามารถอ่านได้  สภาพแวดล้อมที่นำอาร์เอฟไอดีแท๊ก (RFID Tag)  เหมาะสมต่อการใช้งาน ไม่อยู่บนพื้นผิวที่ดูดซับคลื่นวิทยุ   เช่น โลหะ  จากข้อจำกัดที่กล่าวมาข้างต้น  ดังนั้น  ข้อกังวลที่ว่า  จะถูกอ่านโดยไม่รู้ตัวนั้น  จึงเป็นไปได้ยาก

นอกจากนั้น  ในปัจจุบัน  มีการพัฒนาเครื่องอ่านอาร์เอฟอดี (RFID Reader) ที่จะส่งคำสั่งลงไปเพื่อให้อาร์เอฟอดีแท๊ก (RFID Tag)  นั้นไม่สามารถที่จะใช้งานได้อีก  เรียกว่า   Kill Command  เมื่ออาร์เอฟไอดีแท๊ก (RFID Tag)  ถูกอ่านโดยเครื่องอ่านอาร์เอฟไอดี (RFID Reader) ประเภทนี้  อาร์เอฟไอดีแท๊ก (RFID Tag) เหล่านั้นจะไม่สามารถนำกลับใช้ได้อีก  วิธีการนี้เป็นอีกหนึ่งวิธีที่จะแก้ปัญหาเรื่องความลับส่วนบุคคล

o         ความหลากหลายในระยะการอ่าน

จากที่กล่าวมาข้างต้น  เทคโนโลยีอาร์เอฟไอดี (RFID) มีคลื่นความถี่อยู่หลายช่วง  และแต่ละช่วงความถี่ก็มีระยะการอ่านที่แตกต่างกัน  ตัวอย่างเช่น  คลื่นความถี่ต่ำ (LF) สามารถที่จะส่งข้อมูลได้ในระยะไม่กี่เซนติเมตร  ในขณะที่คลื่นความถี่สูง (HF) สามารถที่จะส่งข้อมูลได้ในระยะ 3 ฟุต  หากกล่าวถึงคลื่น UHF ระยะการอ่านก็ยิ่งไกลมากขึ้น  คือ สามารถที่จะส่งข้อมูลได้ไกลถึง 300 ฟุต  ยิ่งไปกว่านั้นหากกล่าวถึง  Active RFID Tag ระยะการอ่านยิ่งไกลไปกว่านั้น

จากการที่เทคโนโลยีอาร์เอฟไอดี (RFID) นี้มีระยะการอ่านที่หลากหลาย  ทำให้สามารถนำนำไปใช้ได้หลากหลาย  ตัวอย่างเช่น คลื่นความถี่ LF เหมาะสำหรับการใช้งานในลักษณะการระบุบุคคล (Personnel identification)  หรือในกิจกรรมปศุสัตว์  หากเป็นคลื่นความถี่  HF ก็จะมีการนำมาใช้ในด้านการชำระเงินอัตโนมัติ (Electronic payment)   หรือลักษณะ Smart Shelf   ถ้าเป็นคลื่นความถี่  UHF ก็นำมาใช้งานในลักษณะการบริหารคลังสินค้า  เป็นต้น

o         ความสามารถในการบรรจุข้อมูลที่หลากหลาย

โดยปกติ  Passive RFID Tag  สามารถที่จะบันทึกข้อมูลได้จำนวนหนึ่ง  ซึ่งเริ่มจากไม่กี่ตัวอักษรจนไปถึงจำนวนหลายพันตัวอักษร  อย่างไรก็ตามในปัจจุบัน  มี Passive Tag  บางประเภทสามารถบันทึกข้อมูลได้มากกว่านั้น   เช่น  Passive Tag  ของ  Maxell สามารถที่จะบันทึกข้อมูลได้มากถึง  4K bytes

เมื่อกล่าวถึงระบบการจัดการบรรจุข้อมูล   ในทางปฏิบัตินั้นมีสองลักษณะคือ 

1.                ลักษณะแรกคือการบันทึกข้อมูลเฉพาะรหัสไว้ในอาร์เอฟไอดีแท๊ก (RFID Tag)  ซึ่งรหัสนี้จะมีหน้าที่เฉพาะการชี้เฉพาะสำหรับวัสดุที่ติดอาร์เอฟไอดีแท๊ก (RFID Tag)  นั้น 

2.                ลักษณะที่สองคือการบันทึกทั้งรหัส  และข้อมูลอื่น ๆ ที่เกี่ยวข้องของวัสดุนั้น ๆ  ลงไปในอาร์เอฟไอดีแท๊ก (RFID Tag)

วิธีการจัดสรรระบบความจำของอาร์เอฟไอดีแท๊ก (RFID Tag) แต่ละประเภทจะเหมาะสมกับการทำงานที่แตกต่างกัน  ตัวอย่างเช่น  การจัดการแบบสองที่เลือกบันทึกข้อมูลบางส่วนไว้ในอาร์เอฟไอดีแท๊ก (RFID Tag)  จะเป็นประโยชน์เมื่อโครงสร้างการทำงานทั้งระบบนั้นมิได้เป็นระบบ  On line  ทั้งหมด  ทำให้การใช้งานในบางส่วนนั้น  ไม่สามารถที่จะเข้าถึงฐานข้อมูลได้  จำเป็นอย่างยิ่งที่จะต้องบันทึกข้อมูลบางส่วนไว้ในอาร์เอฟไอดีแท๊ก (RFID Tag)  ในทางตรงกันข้าม  เช่น  การใช้งานในระบบ  E-payment  ในบางกรณี  หากโครงสร้างของระบบเครือข่าย  สามารถที่จะเข้าถึงกันได้อย่างทั่วถึง  การเชื่อมโยงข้อมูลโดยการอาศัยรหัสของอาร์เอฟไอดีแท๊ก (RFID Tag)  ก็มีความเหมาะสมมากกว่า

นอกเหนือความแตกต่างกันในแง่ของการใช้งานแล้ว  ข้อดีและข้อด้อยของระบบการจัดการหน่วยความจำในแต่ละประเภทก็แตกต่างกัน   ในกรณีที่จะบันทึกข้อมูลลงไปในอาร์เอฟไอดีแท๊ก (RFID Tag) นั้น  จำเป็นอย่างยิ่งที่จะต้องมีระบบความปลอดภัย  เพื่อจะเป็นการป้องกันมิให้มีการบันทึกอื่น ๆ ทับลงไปในข้อมูลเดิมที่บันทึกไว้ก่อนหน้านั้น  ซึ่งอาจจะเป็นการบันทึกซ้ำโดยมิได้ตั้งใจก็ได้

o         ความสามารถในการอ่านอาร์เอฟไอดีแท๊ก (RFID Tag) ได้พร้อมกัน

จุดเด่นประการหนึ่งของอาร์เอฟไอดี  (RFID) คือ  ความสามารถที่จะอ่านอาร์เอฟไอดีแท๊ก (RFID Tag)  ได้มากกว่าหนึ่งในเวลาเดียวกัน  เมื่อมีอาร์เอฟไอดีแท๊ก (RFID Tag)  มากกว่าหนึ่งเข้ามาอยู่ในบริเวณที่เครื่องอ่าน (RFID Reader) อ่านข้อมูลได้  ตัวอย่างเช่น  ในการชำระเงินค่าซื้อสินค้าต่าง ๆ ในซุปเปอร์มาร์เก็ตยังจำเป็นต้องอ่านบาร์โค้ดทีละรายการ  หากมีการนำเทคโนโลยีอาร์เอฟไอดี (RFID) มาใช้  การชำระเงินในลักษณะในการซื้อในลักษณะนี้จะหายไป  เพียงแค่นำสินค้าที่มีอาร์เอฟไอดีแท๊ก (RFID Tag) เข้ามาอยู่ในบริเวณที่เครื่องอ่านอาร์เอฟไอดี (RFID Reader) อ่านข้อมูลได้  รายการสินค้าทั้งหมดก็จะปรากฏขึ้นมาทันที  นอกเหนือจากการนำมาใช้ในการชำระเงิน   หากนำความสามารถนี้มาใช้ในการนำสินค้าเข้าหรือออกโกดัง   จะทำให้การตรวจรับสินค้าเข้าและออกโกดังได้รวดเร็วมากขึ้น  ไม่จำเป็นต้องนำเครื่องอ่านบาร์เโค้ดมาอ่านสินค้าทีละกล่อง

o         ความทนทาน

โดยปกติแล้วอาร์เอฟไอดีแท๊ก (RFID Tag) จะมีความทนทานต่อความชื้น  และความร้อนมากกว่าบาร์โค้ด  จึงมีการนำอาร์เอฟไอดีแท๊ก (RFID Tag)  มาใช้งานแทนบาร์โค้ดในงานบางส่วน  ตัวอย่างเช่น  การใช้ในห้องเย็น  เป็นต้น  นอกจากนั้น  Passive RFID tag  บางประเภทยังสามารถที่จะทนต่อสารเคมี และอุณหภูมิสูงได้อีกด้วย  จากจุดเด่นที่กล่าวมาข้างต้น  ทำให้ Passive RFID Tag  สามารถทำงานได้หลากหลายมากขึ้น  โดยเฉพาะอย่างยิ่งในกรณีที่บาร์โค้ดไม่สามารถทำงานได้  เช่น  การนำเทคโนโลยีนี้มาใช้ในห้องอบสีรถยนต์  เป็นต้น

o         ความสามารถในการทำงานที่ซับซ้อนมากขึ้น

คุณสมบัตินี้จะเป็นจุดเด่นที่สำคัญของเทคโนโลยีอาร์เอฟไอดี (RFID) โดยเฉพาะอย่างยิ่ง Active RFID Tag เนื่องจากว่า อาร์เอฟไอดีแท๊ก (RFID Tag)  ประเภทนี้มีระบบวงจรอิเลทรอนิคส์ และแบตตอรี่อยู่ในตัว  ทำให้อาร์เอฟไอดีแท๊ก (RFID Tag)  ประเภทนี้สามารถที่จะทำงานที่ซับซ้อนได้มากขึ้น  ตัวอย่างเช่น  การบันทึกความเปลี่ยนแปลงอุณหภูมิได้   จึงมีการนำ อาร์เอฟไอดีแท๊ก (RFID Tag) ประเภทนี้มาใช้ในการขนส่งอาหาร  เพื่อดูว่า อุณหภูมิระหว่างการขนส่งมีการเปลี่ยนแปลงหรือไม่   หากมีการเปลี่ยนแปลงย่อมมีผลต่อคุณภาพของอาหารระหว่างการขนส่ง  หรือการนำอาร์เอฟไอดีแท๊ก (RFID Tag)  ประเภทนี้ไปติดกับสินค้าราคาแพง  หากมีใครต้องการขโมย  และทำการถอดอาร์เอฟไอดีแท๊ก (RFID Tag) นี้ออก  อาร์เอฟไอดีแท๊ก (RFID Tag)  ดังกล่าวสามารถที่จะส่งข้อมูลไปเตือนที่ระบบส่วนกลางได้  อีกตัวอย่างที่มีการใช้งานกันอยู่  คือการนำ  Active RFID Tag  มาพัฒนาเป็น  Electronic Seal  เพื่อใช้ในการขนส่ง  เพื่อป้องกันการโจรกรรมตู้คอนเทนเนอร์ระหว่างการขนส่ง  หากมีการแอบเปิดตู้คอนเทนเนอร์ระหว่างขนส่ง  ก็จะมีการบันทึกเวลาที่มีการแอบเปิดไว้ในระบบ   ทำให้ทราบว่า  ระหว่างขนส่งนั้นมีการแอบเปิดตู้คอนเทนเนอร์เวลาใด 

จากคุณสมบัติเหล่านี้จะเห็นได้ว่า  บาร์โค้ดไม่สามารถที่จะทำงานได้  เทคโนโลยีอาร์เอฟไอดี (RFID) จึงเข้ามามีบทบาทเป็นอย่างมาก  ในการทำงานที่ซับซ้อนเหล่านี้  ที่เทคโนโลยีบาร์โค้ดไม่สามารถที่จะทำได้

o         ความแม่นยำในการอ่าน

เมื่อเทียบกับเทคโนโลยีอื่น  เทคโนโลยีอาร์เอฟไอดี (RFID) จัดได้ว่า  เป็นเทคโนโลยีที่สามารถอ่านข้อมูลได้แม่นยำที่สุด  ซึ่งอาจจะไม่สามารถอ่านได้ถึง 100% เหมือนเช่นที่มีการคาดการณ์ไว้อย่างแพร่หลาย  ปัจจัยที่มีผลต่อการอ่านได้แก่

·         ประเภทของอาร์เอฟไอดีแท๊ก (RFID Tag) ลักษณะของคลื่นวิทยุที่ใช้  และขนาดของเสาอากาศมีผลต่อการอ่านทั้งสิ้น

·         กาารติดอาร์เอฟไอดีแท๊ก (RFID Tag)  ตำแหน่งที่ติดอาร์เอฟไอดีแท๊ก (RFID Tag) และวัสดุที่นำอาร์เอฟไอดีแท๊ก (RFID Tag)  ไปติดนั้น  มีผลต่อความแม่นยำในการอ่านทั้งสิ้น 

·         สภาพแวดล้อมในการทำงาน  ในการทำงานสภาพแวดล้อมที่มีอุปกรณ์ที่มีผลต่อคลื่นวิทยุ  ย่อมมีผลในการอ่านทั้งสิ้น  เช่นหากนำเทคโนโลยีอาร์เอฟไอดี (RFID) ไปใช้ในสภาพแวดล้อมที่มีความชื้นสูง ย่อมมีผลการอ่าน  ซึ่งจะมีผลมากน้อยเพียงใดขึ้นอยู่กับสภาพแวดล้อม หากใช้คลื่นความถี่สูง  เช่น UHF  ย่อมมีผลมาก

การสื่อสารกันระหว่างเครื่องอ่านอาร์เอฟไอดี (RFID Reader) กับ อาร์เอฟไอดีแท๊ก (RFID Tag)

การสื่อสารกันระหว่างเครื่องอ่านอาร์เอฟไอดี (RFID Reader) กับอาร์เอฟไอดีแท๊ก (RFID Tag) นั้นขึ้นอยู่กับประเภทของอาร์เอฟไอดีแท๊ก (RFID  Tag)  ก่อนที่กล่าวถึงรายละเอียดของการสื่อสารในแต่ละแบบ  อาณาเขตระหว่างเสาอากาศของเครื่องอ่านอาร์เอฟไอดี (RFID Reader) สามารถส่งสัญญาณคลื่นวิทยุได้ระยะสั้นเรียกว่า Near Field  ส่วนบริเวณที่ไกลออกไปเรียกว่า   Far Field  โดยปกติ Passive RFID ที่ใช้คลื่นความถี่  LF และ  HF จะติดต่อสื่อสารกับเครื่องอ่านอาร์เอฟไอดี (RFID Reader) ในบริเวณที่เรียกว่า  Near Field   ในขณะที่คลื่นความถี่  UHF หรือสูงกว่า  จะติดต่อสื่อสารกับเครื่องอ่านอาร์เอฟไอดี (RFID Reader) ในบริเวณ  Far Field   ดังนั้นจะเห็นได้ว่าอาร์เอฟไอดีแท๊ก (RFID Tag) ที่สื่อสารในบริเวณ  Far Field สามารถที่จะติดต่อสื่อสารได้ในระยะที่ไกลกว่า

ลักษณะการสื่อสารข้อมูลระหว่างอาร์เอฟไอดีแท๊ก (RFID Tag)  กับเครื่องอ่านอาร์เอฟไอดี (RFID Reader) มีสามลักษณะคือ  Modulated backscatter, Transmitter type และ Transponder type

·         Modulated Backscatter  การสื่อสารลักษณะนี้  เครื่องอ่านอาร์เอฟไอดี (RFID Reader) จะส่งคลื่นวิทยุในลักษณะต่อเนื่อง   (Continuous wave) ซึ่งจะส่งออกมาในลักษณะกระแส  AC  ผ่านเสาอากาศที่อยู่ในอาร์เอฟไอดีแท๊ก (RFID Tag)  เมื่ออาร์เอฟไอดีแท๊ก (RFID Tag) ได้รับกระแสจากเครื่องอ่านอาร์เอฟไอดี (RFID Reader)  เสาอากาศก็จะส่งพลังงานให้กับไมโครชิปที่อยู่ในอาร์เอฟไอดีแท๊ก (RFID Tag)   เพื่อให้อาร์เอฟไอดีแท๊ก (RFID Tag)  มีกำลังไฟในการทำงาน  ซึ่งใช้กำลังไฟประมาณ  1.2 โวลท์  แต่ในกรณีของการเขียนข้อมูลจำเป็นต้องใช้กำลังไฟมากถึง  2.2  โวลท์จากเครื่องอ่านอาร์เอฟไอดี (RFID Reader) ไมโครชิบเมื่อได้รับสัญญาณจากเครื่องอ่านอาร์เอฟไอดี (RFID Reader) ก็จะทำการส่งข้อมูลกลับไปให้แก่เครื่องอ่านอาร์เอฟไอดี (RFID Reader)  เมื่อเครื่องอ่านอาร์เอฟไอดี (RFID Reader) ได้รับข้อมูลนี้  ก็จะทำการแปลค่าเหล่านั้น  การสื่อสารแบบนี้จะใช้สำหรับ  Passive และ  Semi-active

ในลักษณะการสื่อสารแบบนี้  เครื่องอ่านอาร์เอฟไอดี (RFID Reader) จะเป็นอุปกรณ์ที่เริ่มต้นในการส่งข้อมูล  และอาร์เอฟไอดีแท๊ก (RFID  Tag)  จะส่งข้อมูลกลับมา  ในลักษณะนี้อาร์เอฟไอดีแท๊ก (RFID Tag) ไม่สามารถสื่อสารได้  หากไม่มีเครื่องอ่านอาร์เอฟไอดี (RFID Reader) เพราะว่าการทำงานในลักษณะนี้จะขึ้นอยู่กับเครื่องอ่านอาร์เอฟไอดี (RFID Reader) เป็นสำคัญ

·         Transmitter  การสื่อสารลักษณะนี้จะใช้กับ  Active RFID Tag  เท่านั้น  การสื่อสารในลักษณะนี้อาร์เอฟไอดีแท๊ก (RFID Tag) จะส่งข้อมูลเป็นช่วงเวลาที่กำหนดไว้  โดยไม่สนใจว่ามีเครื่องอ่านอาร์เอฟไอดี (RFID Reader) อยู่หรือไม่  ดังนั้นการสื่อสารแบบนี้อาร์เอฟไอดีแท๊ก (RFID  Tag)  จะเป็นอุปกรณ์ที่เริ่มการสื่อสารก่อนเสมอ

·         Transponder  การสื่อสารแบบนี้เช่นกับ  Active RFID Tag  บางประเภทเป็นพิเศษ  การสื่อสารแบบนี้อาร์เอฟไอดีแท๊ก (RFID Tag) จะไม่ทำงาน  หรืออยู่ใน  Sleep  mode เมื่อไม่มีการติดต่อสื่อสารกับเครื่องอ่านอาร์เอฟไอดี (RFID Reader)   ในช่วงที่อาร์เอฟไอดีแท๊ก (RFID Tag)  อยู่ใน Sleep Mode   อาร์เอฟไอดีแท๊ก (RFID Tag)  อาจจะส่งข้อมูลออกมาเป็นระยะเพื่อตรวจดูว่า มีเครื่องอ่านอาร์เอฟไอดี (RFID Reader) อยู่ในบริเวณดังกล่าวหรือไม่  เมื่อเครื่องอ่านอาร์เอฟไอดี (RFID Reader) ได้รับสัญญาณดังกล่าว  เครื่องอ่านอาร์เอฟไอดี (RFID Reader) ก็ส่งคำสั่งไปปลุก (wake up) ให้อาร์เอฟไอดีแท๊ก (RFID Tag) ทำงาน  เมื่ออาร์เอฟไอดีแท๊ก (RFID Tag) ได้รับสัญญาณนี้จากเครื่องอ่านอาร์เอฟไอดี (RFID Reader) ก็จะเริ่มทำการส่งข้อมูล   ในการสื่อสารแบบนี้อาร์เอฟไอดีแท๊ก (RFID Tag)  ส่งข้อมูลเมื่อได้รับสัญญาณจากเครื่องอ่านอาร์เอฟไอดี (RFID Reader) เท่านั้น

ในการสื่อสารระหว่างเครื่องอ่านอาร (RFID Reader) กับอาร์เอฟไอดีแท๊ก (RFID Tag) นั้นจะมีอยู่สองลักษณะคือ  การอ่าน  และการบันทึกข้อมูล

·         การอ่านสามารถที่จะอ่านอาร์เอฟไอดีแท๊ก (RFID Tag) พร้อมกันในเวลาเดียวกัน  หรือที่เรียกว่า  Tag collision  เมื่อมี  Tag มากกว่าหนึ่ง  Tag  ส่งสัญญาณกลับมาพร้อมกันให้กับเครื่องอ่านอาร์เอฟไอดี (RFID Reader) เครื่องอ่านอาร์เอฟไอดี (RFID Reader) จำเป็นต้องมี Protocol  เพื่อใช้ในการสื่อสารกับสัญญาณเหล่านั้น  เพื่อมิให้เกิดความสับสนในการสื่อสาร  Protocol  ที่ใช้ในการสื่อสารเรียกว่า   Anti-Collision  ปัจจุบันมีอยู่สอง  Protocol  ที่มีการใช้การอย่างแพร่หลาย  คือ

o    ALOHA สำหรับคลื่นวิทยุ HF

o    Tree Walking สำหรับคลื่นวิทยุ UHF

นอกเหนือจากประเด็นที่กล่าวมา  การสื่อสารระหว่างเครื่องอ่านอาร์เอฟไอดี (RFID Reader) กับอาร์เอฟไอดีแท๊ก (RFID Tag)  ที่ดีควรจะทำให้เกิด ความแม่นยำในการอ่าน (Read Robustness) สูง  ความแม่นยำในการอ่าน  หมายถึงจำนวนครั้งที่สามารถการอ่านอาร์เอฟไอดีแท๊ก (RFID Tag) ได้  เมื่ออาร์เอฟไอดีแท๊ก (RFID Tag)  นั้นอยู่ในบริเวณการอ่าน  (Read Zone)   ระบบอาร์เอฟไอดี (RFID) ที่ดีจำเป็นอย่างยิ่งที่จะต้องได้รับการออกแบบให้สามารถอ่านอาร์เอฟไอดีแท๊ก (RFID Tag)  ได้ตลอดเวลา  ปัจจัยที่มีผลอย่างยิ่งต่อการอ่าน  คือ

·         ระยะเวลาที่อาร์เอฟไอดีแท๊ก (RFID Tag)  อยู่ในบริเวณการอ่าน (Read Zone) ยิ่ง อาร์เอฟไอดีแท๊ก (RFID Tag)  อยู่ในบริเวณการอ่านน้อยแค่ไหน  ความสามารถในการอ่านก็สั้นลงตามไปด้วย  

·          จำนวนอาร์เอฟไอดีแท๊ก (RFID Tag)  ที่อยู่ในบริเวณการอ่านก็มีผลต่อ เนื่องจากว่า  จำนวนอาร์เอฟไอดีแท๊ก (RFID Tag) ที่มีมาก  ก็มีผลให้สามารถให้อ่านอาร์เอฟไอดีแท๊ก (RFID Tag)  ได้น้อยลง

·         ในกรณีของการบันทึกข้อมูลลงไปในอาร์เอฟไอดีแท๊ก (RFID Tag)  นั้น การบันทึกข้อมูลจะใช้เวลานานกว่าการอ่าน  เพราะว่าการเขียนจะมีกระบวนการทำงานที่มากกว่า  ได้แก่  การยืนยันอาร์เอฟไอดีแท๊ก (RFID Tag)  การลบข้อมูลเดิม  การบันทึกข้อมูลใหม่  และการยืนยันอีกครั้ง  ยิ่งไปกว่านั้นข้อมูลที่บันทึกลงไปในอาร์เอฟไอดีแท๊ก (RFID Tag)  จะมีลักษณะเป็นบล๊อก  ซึ่งมีผลทำให้การทำงานมีขั้นตอนเพิ่มมากขึ้น  ดังนั้นการบันทึกข้อมูลหนึ่งลงไปในอาร์เอฟไอดีแท๊ก (RFID Tag)  จะใช้เวลามากกว่าการอ่านข้อมูล  นอกจากนั้นการบันทึกข้อมูลยังต้องการระยะเวลาที่มากกว่า  เมื่อเปรียบเทียบกับการอ่าน   ระยะเวลาที่มากขึ้นมานั้นเป็นการยืนยันได้ว่า  การบันทึกข้อมูลนั้นต้องมีพลังงานมากพอ   และในท้ายที่สุด  การบันทึกข้อมูลลงใน อาร์เอฟไอดีแท๊ก (RFID Tag) จำเป็นอย่างยิ่งต้องมีอาร์เอฟไอดีแท๊ก (RFID Tag)  เพียง  Tag  เดียวอยู่ในบริเวณที่บันทึกข้อมูล  มิฉะนั้น  การบันทึกข้อมูลอาจจะผิดพลาดได้  เพราะอาจจะบันทึกข้อมูลลงในอาร์เอฟไอดีแท๊ก (RFID Tag) ผิด Tag ได้

เสาอากาศของเครื่องอ่านอาร์เอฟไอดี (RFID Reader)

เครื่องอ่านอาร์เอฟไอดี (RFID Reader) ติดต่อสื่อสารกับอาร์เอฟไอดีแท๊ก (RFID Tag) โดยผ่านทางเสาอากาศของเครื่องอ่านอาร์เอฟไอดี (RFID Reader) ซึ่งอาจจะเป็นอุปกรณ์ที่แยกออกจากเครื่องอ่านอาร์เอฟไอดี (RFID Reader) และต่อเชื่อมกับเครื่องอ่านอาร์เอฟไอดี (RFID Reader) โดยผ่านทางสายเคเบิล   หรือเป็นลักษณะที่รวมเข้ากับเครื่องอ่านอาร์เอฟไอดี (RFID Reader)  เป็นอุปกรณ์เดียวกัน  ในกรณีที่เสาอากาศเชื่อมต่อกับเครื่องอ่านอาร์เอฟไอดี (RFID Reader) โดยสายเคเบิล   ระยะห่างจากเครื่องอ่านอาร์เอฟไอดี (RFID Reader) กับเสาอากาศจะมีจำกัด อยู่แค่ 6 ถึง 25  ฟุต   เครื่องอ่านอาร์เอฟไอดี (RFID Reader) หนึ่งเครื่องสามารถที่จะต่อเชื่อมกับเสาอากาศได้ถึง 4 เสาอากาศ

ขอบข่ายของเสาอากาศเครื่องอ่าน  (Antenna Footprint)

ขอบข่ายของเสาอากาศจะเป็นตัวกำหนดอาณาเขตการอ่าน   (Read Zone)  โดยทั่วไปขอบข่ายของเสาอากาศมีรูปทรงเป็นสามมิติ  คล้ายกับลักษณะของบอลลูน  ที่พุ่งตรงออกจากเสาอากาศ (เหมือนรูปด้านล่าง)  บริเวณในส่วนที่พุ่งออกมานั้น  จะเป็นบริเวณที่เครื่องอ่านอาร์เอฟไอดี (RFID Reader) สามารถอ่านได้ดีที่สุด

แต่ในความเป็นจริง ขอบข่ายการอ่านนั้นมิได้เป็นรูปแบบที่กล่าวไว้ข้างต้น  การอ่านของเครื่องอ่านอาร์เอฟไอดี (RFID Reader) บ่อยครั้งที่จะมีรูปแบบที่มิได้เป็นมาตรฐานเช่นนั้นทำให้เกิดบริเวณที่เครื่องอ่านอาร์เอฟไอดี (RFID Reader) ไม่สามารถอ่านได้เรียกว่า   Dead Zone  ดังเช่นตัวอย่างด้านล่าง

ดังนั้น  เมื่ออาร์เอฟไอดีแท๊ก (RFID Tag) อยู่ในบริเวณที่คลื่นวิทยุของเครื่องอ่านอาร์เอฟไอดี (RFID Reader) ครอบคลุมถึง  แต่อาร์เอฟไอดีแท๊ก (RFID Tag)  มีการเคลื่อนไปสู่บริเวณ  Dead Zone   Tag  ดังกล่าวก็จะไม่สามารถที่จะอ่านได้  จะเห็นได้ว่า  ความสามารถในการอ่านในลักษณะนี้จะมีความแน่นอนที่ต่ำ  เพราะฉะนั้นในการติดตั้งเสาอากาศของเครื่องอ่านอาร์เอฟไอดี (RFID Reader)  จำเป็นอย่างยิ่งต้องให้บริเวณการอ่านอยู่ในบริเวณที่อ่านดีที่สุด  ถึงแม้ว่าระยะทางระหว่างเครื่องอ่านอาร์เอฟไอดี (RFID Reader) จะสั้นบ้างเล็กน้อยก็ตาม   จากลักษณะที่กล่าวมาข้างต้นจะเห็นได้ว่า จำเป็นอย่างยิ่งที่จะศึกษาถึงขอบเขตการอ่านของเสาอากาศ  ก่อนที่จะมีติดตั้งเสาอากาศของเครื่องอ่านอาร์เอฟไอดี (RFID Reader)

การตั้งเสาอากาศให้มีแนวทางเดียวกัน (Antenna Polarization)

จากที่กล่าวมาข้างต้น  เสาอากาศจะส่งคลื่นออกไปในบริเวณรอบ ๆ ทางที่คลื่นวิทยุนี้ส่งออกไปเรียกว่า  Antenna Polarization  ในการอ่านอาร์เอฟไอดีแท๊ก (RFID Tag)  ระยะการอ่าน  ความแม่นยำในการอ่าน  จะขึ้นต่อ  Antenna Polarization  และมุมในการอ่านของอาร์เอฟไอดีแท๊ก (RFID Tag) เป็นอย่างมาก  ลักษณะของเสาอากาศ สำหรับคลื่น  UHF  จะมีสองลักษณะคือ 

·         Linear polarized

·         Circular polarized

การอ่านสำหรับเสาอากาศทั้งสองประเภทจะมีลักษณะเหมือนดังแผนภาพด้านล่าง

เสาอากาศแบบ Linear Polarized Antenna

เสาอากาศลักษณะนี้จะส่งคลื่นวิทยุออกมาในแนวเส้นตรง  ตามตัวอย่างด้านล่าง

เสาอากาศลักษณะนี้จะมีมุมในการอ่านที่แคบ แต่จะอ่านได้ในระยะไกลกว่า  ถ้าเปรียบเทียบ  เสาอากาศแบบ circular polarized   ซึ่งเสาอากาศแบบนี้จะง่ายในการกำหนดขอบเขตในการอ่าน  เพราะการอ่านเป็นเส้นตรง  เสาอากาศแบบนี้จะมีประโยชน์เป็นอย่างมากสำหรับการใช้งานที่  อาร์เอฟไอดีแท๊ก (RFID Tag)  อยู่ในตำแหน่งคงที่ ตำแหน่งของอาร์เอฟไอดีแท๊ก (RFID Tag)  สำหรับเสาอากาศลักษณะนี้มีลักษณะเหมือนตัวอย่างด้านล่าง

เสาอากาศแบบ Circular Polarized Antenna

เสาอากาศแบบนี้จะส่งคลื่นวิทยุออกมาในลักษณะเป็นวงกลมเหมือนดังภาพด้านล่าง  ดังนั้นคลื่นที่ออกมาจะมีจุดที่สูงที่สุด  และจุดที่ต่ำสุด                                

เนื่องจากลักษณะของคลื่นที่ออกมา  จะเห็นได้ว่า  เสาอากาศแบบนี้จะมีผลต่อตำแหน่งของอาร์เอฟไอดีแท๊ก (RFID Tag) น้อยกว่าเสาอากาศแบบแรก ดังนั้นเสาอากาศแบบนี้จึงเหมาะกับการใช้งานในลักษณะที่ตำแหน่งจากอาร์เอฟไอดีแท๊ก (RFID Tag)  ไม่สามารถที่จะคาดเดาได้  เสาอากาศแบบ circular polarized antenna จะมีมุมอ่านที่กว้างกว่า  ดังนั้นทำให้สามารถอ่านอาร์เอฟไอดีแท๊ก (RFID Tag)  ได้กว้างกว่า  ตำแหน่งของอาร์เอฟไอดีแท๊ก (RFID Tag)  สำหรับเสาอากาศประเภทนี้จะมีลักษณะเหมือนดังแผนภาพด้านล่างนี้

Reader collision

Reader collision จะเกิดขึ้นเมื่อมีเครื่องอ่านอาร์เอฟไอดี (RFID Reader) มากกว่าหนึ่งเครื่องอยู่ในบริเวณการอ่าน (Read zone)   สภาพลักษณะนี้จะเกิดขึ้นเมื่อเสาอากาศของเครื่องอ่านอาร์เอฟไอดี (RFID Reader) มากกว่าหนึ่งเครื่องส่งสัญญาณรบกวนกันเอง  เพื่อที่จะป้องกันปัญหาเหล่านี้  การติดตั้งเสาอากาศของเครื่องอ่านอาร์เอฟไอดี (RFID Reader) ไม่ควรที่จะติดตั้งในลักษณะหันหน้าเข้าหากันโดยตรง  หากจำเป็นต้องหันเสาอากาศเข้าหากัน  จำเป็นอย่างยิ่งที่จะต้องตั้งเสาอากาศทั้งสองให้ห่างกันพอสมควร   เพื่อที่จะให้คลื่นวิทยุของเสาทั้งสองไม่รบกวนกัน

นอกเหนือจากวิธีที่กล่าวมาข้างต้นแล้ว  สามารถเลือกใช้วิธี  Division Multiple Access (TDMA)  ด้วยวิธีนี้เสาอากาศทั้งสองจะทำงานไม่พร้อมกัน  แต่วิธีนี้อาจจะเกิดปัญหาที่ว่า  อาร์เอฟไอดีแท๊ก (RFID Tag)  หนึ่งตัวอาจจะถูกอ่านมากกว่าหนึ่งครั้ง  ด้วยเครื่องอ่านอาร์เอฟไอดี (RFID Reader) คนละตัว  ดังนั้นจำเป็นอย่างยิ่งจะต้องระบบซอฟท์แวร์ที่ทำการกรองเฉพาะ Tagที่สนใจ เพื่อป้องกันไม่ให้เกิดการอ่านซ้ำ

คอนโทรลเลอร์ (Controller)

คอนโทรลเลอร์เป็นอุปกรณ์ที่ใช้ในการควบคุมการติดต่อสื่อสารระหว่างอุปกรณ์ภายนอกกับเครื่องอ่านอาร์เอฟไอดี (RFID Reader)  ยกตัวอย่างเช่น  การพิมพ์เอกสารผ่านเครื่องพิมพ์  คอมพิวเตอร์จำเป็นต้องมีระบบซอฟท์แวร์ที่ติดตั้งในเครื่องคอมพิวเตอร์  เพื่อการพิมพ์เอกสาร  ลักษณะเดียวกัน  หากต้องการนำข้อมูลออกจากเครื่องอ่านอาร์เอฟไอดี (RFID Reader)  คอมพิวเตอร์ก็จำเป็นต้องมีระบบ Controller

ระบบเซ็นเซอร์ (Annunciator หรือ Actuator)

จากที่กล่าวมาในข้างต้น  เครื่องอ่านอาร์เอฟไอดี (RFID Reader) ไม่จำเป็นต้องเปิดทำงานตลอดเวลา  เครื่องอ่านอาร์เอฟไอดี (RFID Reader) สามารถที่จะถูกตั้งให้เปิดและปิดทำงานได้ตามที่ต้องการ  การที่จะเปิดหรือปิดทำงานนั้น  อุปกรณ์ที่เรียกว่า  เซ็นเซอร์จะเข้ามามีบทบาทในส่วนนี้  เซ็นเซอร์จะทำหน้าที่เปิดและปิดเครื่องอ่านเมื่อได้รับสัญญาณจากภายนอก  สัญญาณที่เข้ามานั้นมีสองลักษณะ คือ  Annunciator  และ  Actuator   สัญญาณที่เป็น Annunciator จะเป็นสัญญานที่เป็นระบบอิเลกทรอนิคส์  เช่น  เสียงเตือน  สัญญาณไฟ  เป็นต้น  สำหรับสัญญานที่เป็น Actuator นั้นเป็นสัญญานที่เป็นสัญญานด้านกลไกต่าง ๆ เช่น  ประตูเปิดหรือปิด  หรือสัญญานจากระบบ PLC

ระบบ Host และระบบซอฟท์แวร์

ระบบ  Host  และระบบซอฟท์แวร์จะรวมถึงระบบต่าง ๆ ทั้งฮาร์ดแวร์  และซอฟท์แวร์ที่แยกออกจากอุปกรณ์ฮาร์ดแวร์ของอาร์เอฟไอดี (RFID) ระบบส่วนนี้จะประกอบด้วย

·         ระบบ Edge interface  ส่วนนี้จะเป็นส่วนที่ต่อเชื่อมระบบทั้งหมดเข้ากับฮาร์ดแวร์อาร์เอฟไอดี (RFID)   หน้าที่หลักของส่วนนี้คือ  รับข้อมูลจากเครื่องอ่านอาร์เอฟไอดี  (RFID Reader) ควบคุมการทำงานของเครื่องอ่านอาร์เอฟไอดี (RFID Reader)   และเชื่อมโยงเครื่องอ่านอาร์เอฟไอดี (RFID Reader) กับอุปกรณ์ภายนอก หรือการต่อเชื่อมกับอุปกรณ์ภายนอกโดยตรงไม่ต้องผ่านเครื่องอ่านอาร์เอฟไอดี (RFID Reader)  เช่น เซนเซอร์ ต่าง ๆ  ระบบนี้จะใกล้ชิดกับเครื่องอ่านอาร์เอฟไอดี (RFID Reader) เป็นอย่างมาก  นอกเหนือจากหน้าที่ที่กล่าวมาข้างต้นแล้ว  ระบบนี้อาจมีหน้าที่เพิ่มเติมอีกด้วย  ได้แก่

·         กรองข้อมูลสำหรือการอ่านซ้ำจากเครื่องอ่านอาร์เอฟไอดีหลายเครื่อง

·         จัดให้มีการตั้งระบบอัตโนมัติเมื่อได้รับข้อมูลจากเซนเซอร์ภายนอก

·         จัดระบบงานที่ซับซ้อนเช่น  การรวบรวม  หรือการเลือกส่งข้อมูลจากอาร์เอฟไอดีแท๊ก (RFID Tag)  ไปสู่ระบบทั้งหลาย

·         การบริหารและจัดการเครื่องอ่านอาร์เอฟไอดี (RFID Reader)

·         ระบบ Middleware  ระบบ Middleware เป็นระบบที่ต่อเชื่อมระหว่าง  Edge interface  และ ระบบซอฟท์แวร์ Back-end interface.  หน้าที่ของระบบ  Middlewareจะประกอบด้วย

·         การจัดแบ่งข้อมูลระหว่างจากภายในและภายนอกระบบ

·         การบริหารข้อมูลของระบบอาร์เอฟไอดี (RFID) อย่างมีประสิทธิภาพ

·         ทำหน้าที่ในการกลั่นกรองข้อมูลเพื่อนำไปปฏิบัติการ

·         จัดการระบบเพื่อให้สามารถใช้งานได้กับระบบซอฟท์แวร์ในการใช้งาน

·         ระบบการต่อเชื่อมกับซอฟท์แวร์ Enterpriseback-end  เป็นส่วนที่ใช้สำหรับการเชื่อมต่อกับระบบ middleware กับซอฟท์แวร์ enterprise back-end.  ส่วนนี้เป็นส่วนสำคัญในการปรับระบบเชื่อมกับกระบวนการจัดการ (Business process)  สาเหตุที่ไม่สามารถเชื่อมต่อ  Middle ware  กับซอฟท์แวร์สำเร็จรูปได้  เนื่องจาก  ระบบ middleware ส่วนใหญ่เป็นซอฟท์แวร์ที่สำเร็จรูป  ดังนั้นการนำไปใช้งานจึงหลีกเลี่ยงไม่ได้ที่ต้องมีการปรับเปลี่ยนแก้ไข   เพื่อที่จะให้การเชื่อมต่อข้อมูลระหว่างระบบ Middleware กับซอฟท์แวร์ enterprise back endเป็นไปอย่างมีประสิทธิภาพ  ในปัจจุบันมีระบบซอฟท์แวร์ในการปฏิบัติการจำนวนมากที่มีการพัฒนาระบบเชื่อมต่อนี้ไว้ในโปรแกรมที่พัฒนาขึ้น 

·         ระบบซอฟท์แวร์ Enterprise  Back End  ประกอบด้วยระบบซอฟท์แวร์ที่ใช้ในการปฏิบัติการทั้งหมด   ซึ่งส่วนนี้จะเป็นส่วนที่เก็บข้อมูล  และกระบวนการในการปฏิบัติงานทั้งหมด  ในแง่ของระบบอาร์เอฟไอดี (RFID) ระบบซอฟท์แวร์ส่วนนี้  จะเป็นส่วนที่ฐานข้อมูลสำหรับอาร์เอฟไอดีแท๊ก (RFID Tag)  แต่ละอาร์เอฟไอดีแท๊ก (RFID Tag)  ที่ระบบ  Middleware  ได้รับข้อมูล  และเพื่อปฏิบัติการต่าง ๆ

ระบบโครงสร้างการติดต่อสื่อสาร

ระบบนี้จะเป็นส่วนที่ใช้ในการต่อเชื่อมองค์ประกอบต่าง ๆ ของระบบอาร์เอฟไอดี (RFID) เข้าด้วยกัน  ซึ่งการเชื่อมต่ออาจจะเป็นระบบสายหรือไร้สายก็ได้  ในแง่ของระบบสายอาจจะเป็นการเชื่อมต่อด้วย  Serial ระหว่างเครื่องอ่านอาร์เอฟไอดี  (RFID Reader) และคอมพิวเตอร์    ในกรณีของการเชื่อมต่อด้วยระบบไร้สาย  อาจจะเป็นระบบง่าย ๆ เช่นระบบ  Bluetooth  หรือ ระบบไร้สายอย่างกว้างขึ้นเช่น  ระบบ  WAN   หรือระบบดาวเทียม  เป็นต้น

สรุป

ระบบอาร์เอฟไอดี (RFID) ประกอบด้วยส่วนต่าง ๆ หลายส่วน  โดยเริ่มตั้งแต่อุปกรณ์ที่เกี่ยวกับเทคโนโลยีอาร์เอฟไอดี (RFID) โดยเฉพาะ ได้แก่  อาร์เอฟไอดีแท๊ก (RFID Tag)  และเครื่องอ่านอาร์เอฟไอดี (RFID Reader) แต่องค์ประกอบสองส่วนนี้มิได้ทำให้ระบบอาร์เอฟไอดี (RFID) สามารถทำงานได้อย่างมีประสิทธิภาพ  ในการนำไปใช้จำเป็นอย่างยิ่งต้องมีอุปกรณ์  ได้แก่  อุปกรณ์ด้าน Networkต่าง ๆ  รวมถึงระบบซอฟท์แวร์ต่าง ๆ  เช่น   Middle ware   ERP software  เป็นต้น  ในการนำระบบทั้งหมดสามารถใช้ได้อย่างมีประสิทธิภาพ  จำเป็นอย่างยิ่งที่จะต้องทำให้อุปกรณ์ต่าง ๆ สอดคล้องกันอย่างดี 

โครงสร้างของเครื่องอ่านอาร์เอฟไอดี (RFID Reader)

เครื่องอ่านอาร์เอฟไอดี (RFID Reader)

เครื่องอ่านอาร์เอฟไอดี (RFID Reader) เป็นอุปกรณ์ที่ใช้ในการอ่านและเขียนข้อมูลลงไปในอาร์เอฟไอดีแท๊ก (RFID Tag)   ในการเขียนข้อมูลนั้นสามารถเรียกว่า  เป็นกระบวนการเริ่มตั้งค่าในอาร์เอฟไอดีแท๊ก (RFID Tag)  เรียกว่า  Commissioning Tag  ซึ่งเป็นการเชื่อมโยงอาร์เอฟไอดีแท๊ก (RFID Tag)  กับสิ่งใดสิ่งหนึ่ง ขณะเดียวกันการเขียนก็สามารถใช้เป็นการลบค่าได้เหมือนกัน  หรือการบันทึกข้อมูลใหม่ลงไปในอาร์เอฟไอดีแท๊ก (RFID Tag) ซึ่งเรียกว่า   Decommissioning tag  

เครื่องอ่านอาร์เอฟไอดี (RFID Reader) เป็นหัวใจหลักของอุปกรณ์อาร์เอฟไอดี (RFID)  และในเครื่องอ่านอาร์เอฟไอดีประกอบด้วย

·         ส่วนการส่งข้อมูล  ส่วนนี้จะรับผิดชอบในการส่งสัญญาณจากเครื่องอ่านอาร์เอฟไอดี (RFID Reader)  และรับสัญญาณจากอาร์เอฟไอดีแท๊ก (RFID Tag) ที่ส่งกลับให้กับเสาอากาศของเครื่องอ่านอาร์เอฟไอดี (RFID Reader)

·         ส่วนการรับข้อมูล  ส่วนนี้จะรับข้อมูลจากอาร์เอฟไอดีแท๊ก (RFID Tag) หลังจากได้รับข้อมูลจากอาร์เอฟไอดีแท๊ก (RFID Tag)  นี้แล้ว  ส่วนนี้จะส่งข้อมูลต่อไปให้แก่ส่วนไมโครโปรเซสเซอร์

·         ไมโครโปรเซสเซอร์  รับผิดชอบในการสื่อสารกันระหว่างอาร์เอฟไอดีแท๊ก (RFID Tag) กับเครื่องอ่านอาร์เอฟไอดี (RFID Reader)  ส่วนนี้จะเป็นตัวแปลงโปรโตคอล  แปลงข้อมูล และทำการตรวจสอบหลังจากได้รับข้อมูลจากอาร์เอฟไอดีแท๊ก (RFID Tag)    ส่วนนี้จะเป็นส่วนที่แปลงข้อมูลที่ได้รับเป็นข้อมูลดิจิตอลสัญญาณอะนาล๊อก  (Analog)  ยิ่งไปกว่านั้นไมโครโปรเซสเซอร์นี้ยังประกอบด้วย Logic ต่าง ๆ ในการกรองข้อมูลและอ่านข้อมูลจากอาร์เอฟไอดีแท๊ก (RFID Tag)

·         ส่วนความจำ  ส่วนนี้ใช้ในการเก็บข้อมูล เช่น ข้อมูลจากอาร์เอฟไอดีแท๊ก (RFID Tag)    ในการทำงานบางครั้ง  เมื่อส่วนที่ต่อเชื่อมระหว่างเครื่องอ่านอาร์เอฟไอดี (RFID Reader) และคอนโทรลเลอร์ (Controller)  หรือส่วนที่เป็นซอฟท์แวร์  มีปัญหาในการทำงาน  ส่วนที่ทำหน้าที่ในการเก็บความจำนี้จะทำให้ข้อมูลที่อ่านจากอาร์เอฟไอดีแท๊ก (RFID Tag)  ไม่สูญหาย   การเก็บความจำนี้ขึ้นอยู่กับขนาดของหน่วยความจำ   อย่างไรก็ตามหน่วยความจำในเครื่องอ่านอาร์เอฟไอดี (RFID Reader) ก็มีขนาดจำกัด  หากระบบในเครื่องอ่านอาร์เอฟไอดี (RFID Reader) หยุดการทำงานเป็นเวลานาน  หน่วยความจำในเครื่องจำอาจจะไม่มากพอ  ทำให้ข้อมูลบางส่วนหายไปได้

·         ส่วนการรับและส่งออกข้อมูลจากอุปกรณ์ภายนอก  เช่น  การรับข้อมูลจากเซนเซอร์  เป็นต้น  ในความเป็นจริง  เครื่องอ่านอาร์เอฟไอดี (RFID Reader) ไม่จำเป็นต้องเปิดทำงานตลอดเวลา  เนื่องจากว่า อาร์เอฟไอดี (RFID Tag)  อาจจะเข้ามาในบริเวณเครื่องอ่านอาร์เอฟไอดี (RFID Reader) ไม่บ่อยเท่าที่ควร  ซึ่งลักษณะนี้หากเปิดเครื่องอ่านอาร์เอฟไอดี (RFID Reader) ไว้ตลอดเวลา  อาจจะเป็นการสิ้นเปลืองโดยใช่เหตุ  ดังนั้นการทำงานส่วนนี้ จะเป็นการเปิด/ปิดเครื่องอ่านอาร์เอฟไอดี (RFID Reader) เมื่อมีอาร์เอฟไอดีแท๊ก (RFID Tag)  เข้ามาในเครื่องอ่านอาร์เอฟไอดี (RFID Reader)   ส่วนที่เป็นเซนเซอร์จะส่งข้อมูลไปกระตุ้นให้เครื่องอ่านอาร์เอฟไอดี (RFID Reader) ทำงาน  นอกจากนี้  ส่วนนี้ยังทำหน้าที่ในการส่งออกข้อมูลด้วย  การส่งออกข้อมูลสามารถที่จะกำหนดได้ให้ส่งข้อมูลออกตามเงื่อนไขที่กำหนดไว้ เช่น  การเปิดและปิดประตู เป็นต้น

·         อุปกรณ์คอนโทรลเลอร์  คอนโทรลเลอร์นี้เป็นส่วนที่ทำหน้าที่ในการติดต่อสื่อสาร  ระหว่างเครื่องอ่านอาร์เอฟไอดี (RFID Reader) กับคอมพิวเตอร์  หรืออุปกรณ์ต่อเชื่อมอื่น  นอกจากนั้น  ยังเป็นส่วนควบคุมการทำงานของเครื่องอ่านอาร์เอฟไอดี (RFID Reader)

·         ส่วนการสื่อสาร  ทำหน้าที่ควบคุมการติดต่อสื่อสารของเครื่องอ่านอาร์เอฟไอดี (RFID Reader) ส่วนนี้จะต่อเชื่อมระหว่างคอนโทรลเลอร์กับอุปกรณ์ภายนอก   อุปกรณ์ในการติดต่อสื่อสารนั้น อาจจะทำได้หลายรูปแบบเช่น  การสื่อสารแบบ  Serial  หรือ แบบ  Network เป็นต้น  ในการติดต่อกับอุปกรณ์ภายนอกได้  จะทำงานโดยผ่านการสั่งงานของคอนโทรลเลอร์  ซึ่งการติดต่อสื่อสารนั้น อาจจะเป็นการเก็บข้อมูล  การรับคำสั่ง  และส่งข้อมูลกลับ

·         ส่วนแหล่งพลังงาน  ส่วนนี้ทำหน้าที่ในการเป็นแหล่งพลังงานให้กับเครื่องอ่านอาร์เอฟไอดี (RFID Reader) โดยปกติส่วนนี้จะรับพลังงานจากภายนอก  และส่งผ่านเข้ามาเครื่องอ่านอาร์เอฟไอดี (RFID Reader) โดยผ่านส่วนแหล่งพลังงานนี้

ประเภทของเครื่องอ่านอาร์เอฟไอดี (RFID Reader)

ในการจำแนกประเภทของเครื่องอ่านอาร์เอฟไอดี (RFID Reader) สามารถแยกได้ตามการต่อเชื่อม   และการใช้งาน  หากแยกประเภทเครื่องอ่านอาร์เอฟไอดี (RFID Reader) ตามลักษณะการต่อเชื่อมสามารถแบ่งได้เป็น  2 แบบ คือ การต่อเชื่อมแบบ  Serial   และ Network  หากแยกประเภทของเครื่องอ่านอาร์เอฟไอดี (RFID Reader) ตามการใช้งาน  สามารถแยกเป็นเครื่องอ่านอาร์เอฟไอดี (RFID Reader) แบบติดตั้งอยู่กับที่  และเครื่องอ่านแบบมือถือ

1. การแบ่งแยกตามลักษณะการต่อเชื่อม

1.1. เครื่องอ่านอาร์เอฟไดี (RFID Reader) แบบ  Serial   เครื่องอ่านอาร์เอฟไอดี (RFID Reader) แบบ  Serial  นั้นติดต่อกับอุปกรณ์ภายนอกโดยผ่านทาง   Serial  ซึ่งปกติแล้วจะต่อเชื่อมโดยผ่าน  RS232 หรือ RS485  โดย   RS485 จะสื่อสารได้ในระยะที่ไกลกว่า   จุดดีของเครื่องอ่านอาร์เอฟไอดี (RFID Reader) ประเภทนี้คือ การสื่อสารสามารถเชื่อถือไว้มากกว่าเครื่องอ่านแบบ  Network    ทำให้เครื่องอ่านอาร์เอฟไอดี (RFID Reader) ประเภทนี้จะนำมาใช้งานพื่อทีจะลดปัญหาในการสื่อสาร  แต่เครื่องอ่านอาร์เอฟไอดี (RFID Reader) ประเภทนี้ก็มีจุดเสีย  คือ  ความยาวของสายเคเบิล  นอกเหนือจากนั้น   Serial Port มีค่อนข้างจำกัด  ดังนั้นจึงจำเป็นต้องมีอุปกรณ์ต่อเชื่อมมากตามไปด้วย   ปัญหาต่อมาคือปัญหาการบำรุงรักษา  การบำรุงรักษาเครื่องอ่านอาร์เอฟไอดี (RFID Reader) ประเภทนี้จำเป็นอย่างยิ่งที่จะต้องให้เจ้าหน้าที่เข้าไปดูแลเครื่องอ่านอาร์เอฟไอดี (RFID Reader) ทีละเครื่อง  นอกเหนือจากปัญหาเหล่านี้แล้ว  ซึ่งปัจจัยเหล่านี้อาจมีผลทำให้ค่าใช้จ่ายในการดูและรักษาสูงขึ้น

1.2. เครื่องอ่านอาร์เอฟไอดี (RFID Reader) แบบ Network  นั้นติดต่อกับคอมพิวเตอร์ผ่านระบบสาย  หรือไร้สาย  จุดเด่นของเครื่องอ่านอาร์เอฟไอดี (RFID Reader) ประเภทนี้  คือ ไม่จำเป็นต้องขึ้นอยู่กับความยาวของสายเคเบิ้ล  ที่ใช้ในการต่อเชื่อมกับคอมพิวเตอร์  ในการ  Update  firmware  สามารถทำได้ง่าย  ไม่จำเป็นต้องไปตรวจที่เครื่องอ่านอาร์เอฟไอดี (RFID Reader) เหมือนเครื่องอ่านอาร์เอฟไอดี (RFID Reader) แบบ  Serial  ประเด็นนี้ทำให้การบำรุงรักษาและค่าใช้จ่ายในการบำรุงรักษาต่ำ  ข้อเสียของเครื่องอ่านอาร์เอฟไอดี (RFID Reader) ประเภทนี้  คือ  การต่อเชื่อมมีความน่าเชื่อถือที่ต่ำกว่าเครื่องอ่านอาร์เอฟไอดี (RFID Reader) แบบ Serial  แต่อย่างไรก็ตามหากระบบโครงสร้างเครือข่ายมีปัญหา  ซึ่งอาจมีผลให้เครื่องอ่านอาร์เอฟไอดี (RFID Reader) มีปัญหาไปด้วย อย่างไรก็ตาม  เครื่องอ่านอาร์เอฟไอดี (RFID Reader) ประเภทนี้จะมีหน่วยความจำในตัว  ซึ่งสามารถแก้ปัญหาของเครือข่ายได้ในบางส่วน

2.   การแบ่งแยกตามลักษณะการใช้งาน

2.1. เครื่องอ่านอาร์เอฟไอดี (RFID Reader) แบบติดตั้งอยู่กับที่  เครื่องอ่านอาร์เอฟไอดี (RFID Reader) ประเภทนี้จะติดตั้งไว้ที่ใดที่หนึ่ง  เช่นติดไว้ที่กำแพง หรือติดอยู่บนรถ  ในบริเวณที่กำหนดไว้ให้เป็นอาณาเขตของเครื่องอ่านอาร์เอฟไอดี (RFID Reader)   ราคาของเครื่องอ่านอาร์เอฟไอดี (RFID Reader) ประเภทนี้จะถูกกว่าเครื่องอ่านอาร์เอฟไอดี (RFID Reader) แบบมือถือ  ทำให้เครื่องอ่านอาร์เอฟไอดี (RFID Reader) แบบนี้มีการใช้งานที่แพร่หลายกว่า   เครื่องอ่านอาร์เอฟไอดี (RFID Reader) ประเภทนี้มีหลากหลายชนิด  ตัวอย่างเช่น   Agile Reader  ซึ่งเป็นเครื่องอ่านอาร์เอฟไอดี (RFID Reader) ที่สามารถใช้ได้หลายคลื่น  และสามารถใช้ได้กับอาร์เอฟไอดี (RFID Tag) หลายประเภท  นอกจากนี้ยังมีเครื่องอ่านอาร์เอฟไอดี (RFID Reader) ที่สามารถพิมพ์บาร์โค้ด  และบันทึกข้อมูลลงไปในอาร์เอฟไอดีแท๊ก (RFID Tag) ได้ในขณะเดียวกัน   เครื่องอ่านอาร์เอฟไอดี (RFID Reader) ประเภทนี้สามารถทำงานได้ในสองลักษณะคือ   Autonomous  และ    Interactive

ในการทำงานแบบ   Autonomous  เครื่องอ่านอาร์เอฟไอดี (RFID Reader) จะอ่านอาร์เอฟไอดีแท๊ก (RFID Tag)  ตลอดเวลา  ทุก ๆ ครั้งที่อาร์เอฟไอดีแท๊ก (RFID Tag)  ถูกอ่านจะเก็บข้อมูลไว้ในรายการที่เรียกว่า  Tag List   รายการที่อยู่ใน  Tag List  จะสอดคล้องกับเวลาในการอ่าน  หากอาร์เอฟไอดีแท๊ก (RFID Tag)  ที่กำหนดไว้ไม่ถูกอ่านในเวลาที่  ก็จะถูกลบออกไปจากรายการ  ในรายการ  Tag list  จะประกอบด้วย

o    รหัสของอาร์เอฟไอดีแท๊ก (RFID Tag)

o    เวลาในการอ่าน

o    อาร์เอฟไอดีแท๊ก (RFID Tag)  ถูกอ่านบ่อยแค่ไหน

o    เสาอาการที่ใช้ในการอ่านอาร์เอฟไอดีแท๊ก (RFID Tag)

o    ชื่อของเครื่องอ่านอาร์เอฟไอดี (RFID Reader)

สำหรับการทำงานแบบ   Interactive  เครื่องอ่านอาร์เอฟไอดี (RFID Reader) ประเภทนี้จะทำงานตามคำสั่งที่ได้รับจากคอมพิวเตอร์ส่วนกลาง  หรือจากผู้ใช้  หลังจากเครื่องอ่านอาร์เอฟไอดี (RFID Reader) ทำงานตามคำสั่งเป็นที่เรียบร้อยแล้ว  เครื่องอ่านอาร์เอฟไอดี (RFID Reader) จะหยุดรอคำสั่งต่อไป

2.2  เครื่องอ่านอาร์เอฟไอดี (RFID Reader) แบบมือถือ  เครื่องอ่านอาร์เอฟไอดี (RFID Reader) ประเภทนี้จะมีเสาอากาศฝังอยู่ในตัว  ทำให้ระยะการอ่านค่อนข้างสั้นเมื่อเปรียบเทียบกับเครื่องอ่านอาร์เอฟไอดี (RFID Reader) แบบแรกที่กล่าวมา เครื่องอ่านอาร์เอฟไอดี (RFID Reader) ประเภทนี้มีราคาค่อนข้างสูง

โครงสร้างของระบบอาร์เอฟไอดี (RFID)

ระบบอาร์เอฟไอดี (RFID)  เป็นระบบที่ประกอบส่วนต่าง ๆ เข้าด้วยกัน ซึ่งสามารถที่จะสรุปได้ดังต่อไปนี้

o       อาร์เอฟไอดีแท๊ก (RFID Tag) เป็นส่วนประกอบหลักของระบบอาร์เอฟไอดี (RFID System)

o       เครื่องอ่านอาร์เอฟไอดี (RFID Reader) เป็นส่วนประกอบหลักอีกส่วนหนึ่งของระบบอาร์เอฟไอดี (RFID System)

o       เสาอากาศของเครื่องอ่านอาร์เอฟไอดี  (RFID Reader) ในปัจจุบันเครื่องอ่านอาร์เอฟไอดี (RFID Reader) บางรุ่นมีการสร้างเสาอากาศรวมในตัวเครื่องอ่านอาร์เอฟไอดี (RFID Reader)

o       กล่องควบคุม   ส่วนประกอบหลักอีกส่วนหนึ่งในระบบอาร์เอฟไอดี (RFID System)  ในปัจจุบันกล่องควบคุมนี้จะถูกสร้างรวมเข้าไปอยู่กับเครื่องอ่านอาร์เอฟไอดี (RFID Reader)

o       เซ็นเซอร์  หรืออุปกรณ์แสดงผล  อุปกรณ์นี้เป็นอุปกรณ์ส่วนเสริมของระบบ

o       ระบบซอฟท์แวร์  ในทางทฤษณีระบบอาร์เอฟไอดี (RFID) สามารถทำงานได้โดยไม่จำเป็นต้องมีระบบส่วนนี้  แต่ในทางปฏิบัติแล้ว  ระบบอาร์เอฟไอดี (RFID) แทบจะไร้ความหมาย ถ้าไม่มีระบบส่วนนี้

o       โครงสร้างการติดต่อสื่อสาร   ส่วนนี้เป็นองค์ประกอบหลักของระบบอาร์เอฟไอดี (RFID) ซึ่งอาจจะเป็นโครงสร้างสื่อสารแบบสายหรือไร้สายก็ได้  โครงสร้างการสื่อสารนี้เป็นส่วนที่จะเชื่อมต่อส่วนประกอบต่าง ๆ ที่กล่าวมาข้างต้นเข้าด้วยกัน เพื่อให้ส่วนประกอบต่าง ๆ สามารถติดต่อสื่อสารกันได้

  1. อาร์เอฟไอดีแท๊ก (RFID Tag)

อาร์เอฟไอดีแท๊ก (RFID  Tag) เป็นอุปกรณ์ที่ใช้เก็บข้อมูล  และส่งข้อมูลไปให้เครื่องอ่านอาร์เอฟไอดี (RFID Reader) โดยผ่านคลื่นวิทยุ  อาร์เอฟไอดีแท๊ก (RFID Tag)  สามารถแบ่งเป็นประเภทต่าง ๆ ได้ดังต่อไปนี้

·         อาร์เอฟไอดีแท๊ก (RFID Tag)  แบบ  Passive

·         อาร์เอฟไอดีแท๊ก (RFID Tag)  แบบ Active

·         อาร์เอฟไอดีแท๊ก (RFID Tag)  แบบ  Semi-active/Semi-passive

อาร์เอฟไอดีแท๊ก (RFID Tag)  แบบ  Passive

อาร์เอฟไอดีแท๊ก (RFID  Tag) ชนิด  Passive  ไม่มีแหล่งพลังงานในตัวเอง  ในการส่งข้อมูลนั้น  อาร์เอฟไอดีแท๊ก (RFID Tag)  ประเภทนี้จะอาศัยพลังงานจากเครื่องอ่านอาร์อ่านเอฟไอดี (RFID Reader)  เพื่อให้ตนเองมีพลังงานในการส่งข้อมูลกลับไปให้กับเครื่องอ่านอาร์เอฟไอดี (RFID Reader)  เนื่องจากอาร์เอฟไอดีแท๊ก (RFID Tag)  ประเภทนี้ไม่มีแผงวงจรใดใด  และพลังงานใด  ดังนั้นจึงสามารถใช้งานได้เป็นระยะเวลานานไม่มีการหมดอายุ   โดยทั่วไปอาร์เอฟไอดี (RFID Tag)  ลักษณะนี้ เหมาะสมกับการใช้งานที่อยู่ในสภาพแวดล้อมที่ไม่เอื้ออำนวยสำหรับการอ่าน ข้อมูลด้วยระบบบาร์โค้ด  เช่น  ในอุณหภูมิสูง 2040C  หรือสภาพน้ำกรด

ในการส่งข้อมูลระหว่างอาร์เอฟไอดีแท๊ก (RFID  Tag) ชนิดนี้กับเครื่องอ่านอาร์เอฟไอดี (RFID Reader)  เครื่องอ่านอาร์เอฟไอดี (RFID Reader) จะเป็นส่วนที่เริ่มส่งข้อมูลก่อน  เมื่ออาร์เอฟไอดีแท๊ก (RFID Tag)  ได้รับข้อมูลจากเครื่องอ่านอาร์เอฟไอดี (RFID Reader)  ก็จะส่งข้อมูลกลับไป  Passive RFID Tag จะมีขนาดเล็ก   และราคาถูกว่า  Active RFID Tag   โดยหลัก  Passive  RFID Tag จะประกอบด้วย  ไมโครชิป  และเสาอากาศ

ไมโครชิป จะประกอบด้วย ส่วนสำคัญต่าง ๆ ดังต่อไปนี้ ส่วนแรกคือ ส่วนที่เป็นแหล่งพลังงาน ซึ่งมีหน้าที่ในการแปลงไฟแบบ AC จากเสาอากาศของเครื่องอ่านอาร์เอฟไอดี (RFID Reader)  มาเป็นไฟแบบ DC เพื่อใช้งานในส่วนต่าง ๆ ของอาร์เอฟไอดีแท๊ก (RFID Tag)   ส่วนที่สองคือส่วนที่ทำหน้าที่ในการแปลงสัญญาณ ที่เรียกว่า  Modulator  ทำหน้าที่แปลงสัญญาณจากเครื่องอ่านอาร์เอฟไอดี (RFID Reader)  และส่งข้อมูลกลับให้เครื่องอ่านอาร์เอฟไอดี  (RFID Reader) อีกส่วนคือส่วนที่ทำหน้าที่ในการกำหนด  Protocol  ในการสื่อสารข้อมูลระหว่างเครื่องอ่านอาร์เอฟไอดี (RFID Reader) กับอาร์เอฟไอดีแท๊ก (RFID Tag) เรียกว่า  ส่วน  Logic  และท้ายที่สุดคือส่วนที่เป็นหน่วยความจำ  เป็นส่วนที่ใช้สำหรับเก็บข้อมูล  ซึ่งโดยปกติจะมีการเก็บข้อมูลเป็น  Block  

เสาอากาศเป็นส่วนที่ใช้การนำพลังงาน (ไฟฟ้า) จากเครื่องอ่านอาร์เอฟไอดี (RFID Reader) เพื่อให้อาร์เอฟไอดีแท๊ก (RFID Tag) มีพลังงานในการส่งและรับข้อมูลจากเครื่องอ่านอาร์เอฟไอดี  (RFID Reader) เสาอากาศของอาร์เอฟไอดีแท๊ก (RFID Tag)  มีขนาดใหญ่กว่าชิปอย่างมาก  ดังนั้นจะเห็นได้ว่า  การออกแบบเสาอากาศของอาร์เอฟไอดีแท๊ก (RFID Tag)  เป็นปัจจัยสำคัญมาก เนื่องจากมีผลต่อระยะการอ่าน  และมุมในการอ่าน  ปัจจัยที่เกี่ยวข้องกับการออกแบบเสาอากาศมีหลายปัจจัย  ตัวอย่างเช่น

·         ระยะการอ่านระหว่างอาร์เอฟไอดีแท๊ก (RFID Tag)  กับเครื่องอ่าน (RFID Reader)

·         มุมในการอ่านระหว่างอาร์เอฟไอดีแท๊ก (RFID Tag)  กับเครื่องอ่าน (RFID Reader)

·         วัสดุที่ใช้ในการทำ

·         ความเร็วในการอ่าน

·         สภาพแวดล้อมในการอ่าน

·         ลักษณะเสาอากาศของเครื่องอ่านอาร์เอฟไอดี (RFID Reader)

อาร์เอฟไอดีแท๊ก (RFID Tag)  แบบ  Active

อาร์เอฟไอดีแท๊ก (RFID Tag) ชนิด Active   ประกอบด้วยส่วนต่าง ๆ ดังต่อไปนี้

·         ไมโครชิป

·         เสาอากาศ

·         แหล่งพลังงาน  หน้าที่หลักของอุปกรณ์นี้คือ  การจ่ายพลังงานให้แก่อุปกรณ์อิเลคทรอนิค  และการส่งข้อมูล  โดยส่วนใหญ่  Active RFID Tag  จะมีอายุการทำงานประมาณ 2 ถีง  7 ปี ขึ้นอยู่กับประเภทของแบตตอรี่   ปัจจัยหนึ่งที่มีผลต่อการอายุการใช้งานของแบตตอรี่คือ  ความถี่ในการส่งข้อมูล  หากความถี่ต่ำในการส่งข้อมูลนาน Active RFID  Tag นั้นก็จะมีอายุในการใช้งานนาน

·         อุปกรณ์อิเลคทอรนิค  โดยส่วนใหญ่หน้าที่ของอุปกรณ์ส่วนนี้จะใช้งานเหมือน  Transmitter  หรือทำหน้าที่อื่น ๆ เพิ่มเติมเช่น การคำนวน หรือ แสดงค่าต่าง ๆ เช่น เซนเซอร์  เป็นต้น  ทำให้ขอบเขตการทำงานของ Active RFID  Tag  หลากหลายมากขึ้น

ในการติดต่อกันระหว่าง Active RFID  Tag  กับเครื่องอ่านอาร์เอฟไอดี (RFID Reader) สำหรับ  Active RFID Tag  ประเภทนี้  Active RFID Tag  จะเป็นส่วนที่เริ่มการติดต่อก่อน  เนื่องจาก Active RFID Tag  ประเภทนี้มีแหล่งพลังงานของตนเอง  ดังนั้น Active RFID Tag  ประเภทนี้จึงไม่ต้องอาศัยพลังงานจากเครื่องอ่านอาร์เอฟไอดี (RFID Reader) ในการส่งข้อมูล  ยังมี Active RFID Tag  อีกประเภทที่สามารถส่งข้อมูลได้  โดยไม่จำเป็นต้องเข้าอยู่ในระยะของเครื่องอ่านอาร์เอฟไอดี (RFID Reader) เรียกว่า  Transmitter  Tag ประเภทนี้สามารถส่งข้อมูลให้กับเครื่องอ่านอาร์เอฟไอดี (RFID Reader) ได้ไกลถึง 30 เมตร  Active RFID Tag  อีกประเภทที่จะหยุดการทำงาน  (sleep mode) หรือทำงานโดยใช้พลังงานน้อยมาก  เมื่อไม่อยู่ในระยะของเครื่องอ่านอาร์เอฟไอดี (RFID Reader) Active RFID Tag  ประเภทนี้  เครื่องอ่านอาร์เอฟไอดี (RFID Reader) จะทำหน้าที่ในการกระตุ้นให้อาร์เอฟไอดีแท๊ก  (RFID Tag)  ทำงานเมื่อเข้ามาอยู่ในระยะที่เครื่องอ่านอาร์เอฟไอดี (RFID Reader) สามารถอ่านข้อมูลได้  การทำงานในลักษณะนี้ทำให้ อาร์เอฟไอดีแท๊ก (RFID Tag)  ประเภทนี้มีอายุการใช้งานกว่าอาร์เอฟไอดีแท๊ก (RFID  Tag)  ที่เป็นลักษณะ  Transmitter   

อาร์เอฟไอดีแท๊ก (RFID Tag)  แบบ  Semi Active

อาร์เอฟไอดีแท๊ก (RFID  Tag) ชนิด  Semi Active ในบางกรณีอาร์เอฟไอดีแท๊ก (RFID Tag)  ลักษณะนี้จะเรียกว่า  Battery-Assisted Tag เป็น อาร์เอฟไอดีแท๊ก (RFID Tag)  ที่มีแหล่งพลังงานเป็นของตนเอง  และอุปกรณ์อิเลกทรอนิคส์ในการทำงาน  แหล่งพลังงานดังกล่าวจะทำหน้าที่ให้พลังงานแก่อาร์เอฟไอดีแท๊ก (RFID Tag)  ซึ่งมีลักษณะเหมือนกับ Active tag  

ในการส่งข้อมูลนั้นอาร์เอฟไอดีแท๊ก (RFID Tag)  ประเภทนี้จะอาศัยพลังงานจากเครื่องอ่านอาร์เอฟไอดี (RFID Reader)  มีการนำอาร์เอฟไอดีแท๊ก (RFID Tag)  ประเภทนี้แทน  Passive RFID Tag  เนื่องจากว่า  อาร์เอฟไอดีแท๊ก (RFID Tag)  ประเภทนี้ สามารถส่งข้อมูลได้ไกลกว่า  เพราะการส่งข้อมูลไม่ต้องรอให้เกิดการกระตุ้นการทำงานของขดลวดทองแดงเหมือน  Passive RFID Tag   ถึงแม้ว่า วัสดุที่ติดอาร์เอฟไอดีแท๊ก (RFID  Tag)  ประเภทนี้จะเคลื่อนที่ด้วยความเร็ว  วัสดุที่มีผลต่อคลื่นวิทยุ  การส่งข้อมูลก็ยังสามารถทำงานได้ดี

ในการแบ่งประเภทของอาร์เอฟไอดีแท๊ก (RFID Tag) ยังสามารถที่จะแบ่งได้ตามความสามารถในการบันทึกข้อมูล  ซึ่งสามารถแบ่งได้เป็น  3 ประเภท คือ

1.        ประเภทที่อ่านข้อมูลได้อย่างเดียว (RO)

2.        ประเภทที่บันทึกข้อมูลได้เพียงครั้ง  และสามาถอ่านข้อมูลได้ตลอด (WORM)

3.        ประเภทที่สามารถบันทึกและอ่านข้อมูลได้ตลอด (RW)

อาร์เอฟไอดีแท๊ก (RFID Tag) อ่านได้อย่างเดียว (RO)

อาร์เอฟไอดีแท๊ก (RFID Tag)  ประเภทนี้จะถูกโปรแกรมเพียงครั้งเดียว  ข้อมูลนั้นจะบันทึกลงไปในอาร์เอฟไอดีแท๊ก (RFID Tag)  ระหว่างการผลิต  โดยการบันทึกข้อมูลนั้นจะบันทึกลงไปในไมโครชิป   เมื่อบันทึกข้อมูลนี้ลงไปแล้ว  ข้อมูลไม่สามารถที่จะเขียนข้อมูลอื่น ๆ ลงไปได้    อาร์เอฟไอดีแท๊ก (RFID Tag) ประเภทนี้  ในบางครั้งก็จะเรียกว่า อาร์เอฟไอดีแท๊ก (RFID Tag) ที่โปรแกรมด้วยโรงงาน (Factory Programme) อาร์เอฟไอดีแท๊ก (RFID Tag) ประเภทนี้ใช้ได้ดีสำหรับนำไปใช้งานที่มีขนาดเล็กไม่มีความซับซ้อน  แต่ไม่เหมาะสำหรับการใช้งานที่มีความซับซ้อนมาก

อาร์เอฟไอดีแท๊ก้ RFID Tagที่บันทึกข้อมูลเพียงครั้งเดียว  และสามารถอ่านข้อมูลได้ตลอด (WORM)

อาร์เอฟไอดีแท๊ก (RFID Tag) ประเภทนี้จะถูกโปรแกรมหรือเขียนบันทึกข้อมูลเพียงครั้งเดียว  ซึ่งการบันทึกข้อมูลนี้จะบันทึกโดยผู้ใช้  เมื่อต้องการที่จะใช้อาร์เอฟไอดีแท๊ก (RFID Tag) นั้น  ถ้าอาร์เอฟไอดีแท๊ก (RFID Tag)  ถูกเขียนโปรแกรมมากกว่าจำนวนที่กำหนดไว้   อาร์ฺเอฟไอดีแท๊ก (RFID Tag)  ประเภทนี้อาจจะเสียหายได้   อาร์เอฟไอดีแท๊ก (RFID Tag) ประเภทนี้เรียกว่า  Field Programmable

อาร์เอฟไอดีแท๊ก (RFID Tag) ที่สามารถอ่านและเบียนได้ตลอด (RW)

อาร์เอฟไอดีแท๊ก (RFID Tag) ประเภทนี้จะถูกบันทึกซ้ำได้ตลอด  โดยปกติแล้ว  อาร์เอฟไอดีแท๊ก (RFID Tag)  นี้สามารถที่บันทึกซ้ำได้ประมาณ 10,000 ถึง 100,000 ครั้ง หรือมากกว่า  ความสามารถในการบันทึกซ้ำได้ตลอดลักษณะนี้  ทำให้อาร์เอฟไอดีแท๊ก (RFID Tag) ประเภทนี้มีประโยชน์อย่างมาก   อาร์เอฟไอดีแท๊ก (RFID Tag) ประเภทนี้มีหน่วยความจำที่เรียกว่า   Flash  ที่ใช้ในการบันทึกข้อมูล  ดังนั้นอาร์เอฟไอดีแท๊ก (RFID Tag)  ประเภทนี้จะเรียกว่า   Field programmable  หรือ reprogrammable  Tag  ประเภทนี้

คลื่นวิทยุมีกี่ประเภท อะไรบ้าง

1. Low Frequency (LF)

ความถี่นี้จะอยู่ในช่วง 30 Khz  ถึง 300 Khz.  ในเทคโนโลยีอาร์เอฟไอดี (RFID) จะใช้คลื่น 125 KHz ถึง 134 KHz  ความสามารถในการส่งข้อมูลในคลื่นนี้ค่อนข้างช้า  แต่สามารถใช้งานได้ดีในวัสดุที่เป็นของเหลว  หรือโลหะ  จะเห็นได้จากตารางข้างต้น  วัสดุที่เป็นโลหะ หรือน้ำจะมีลักษณะเป็น   RF-friendly ต่อคลื่นความถี่นี้

2. High Frequency (HF)

ความถี่นี้จะอยู่ในช่วง  3 MHz ถึง 30 MHz  ความถี่  13.56 Mhzจะเป็นความถี่ที่มีการใช้งานมากทีสุดในเทคโนโลยีอาร์เอฟไอดี (RFID)   เหมือนเช่นกับความถี่ LF ความถี่นี้จะใช้กับ  Passive tag  เป็นส่วนมาก  ความถี่นี้ใช้งานได้ปานกลางในวัสดุที่เป็นโลหะและของเหลว  และมีการใช้งานอย่างแพร่หลายในโรงพยาบาล  เพราะความถี่นี้ไม่รบกวนอุปกรณ์ที่โรงพยาบาลใช้งานอยู่ในปัจจุบัน

3. Ultra High Frequency (UHF)

ความถี่นี้จะอยู่ในช่วง  300 MHz ถึง 1 GHz.  โดยปกตินี้ความถี่ที่นิยมจะใช้ในความถี่ช่วงนี้คือ 915 MHz ในอเมริกา  และ 868 MHz ในยุโรป  ส่วนประเทศไทยความถี่ที่อนุญาตให้ใช้คือ  920-925 Mhz  

ความถี่ในช่วงนี้สามารถที่จะส่งข้อมูลได้ค่อนข้างเร็ว  แต่จะใช้งานไม่ดีในวัสดุที่เป็นโลหะ และของเหลว  (ยกเว้น Active RFID)  อย่างไรก็ตาม  ความถี่นี้ได้มีการนำมาใช้อย่างแพร่หลาย  เพราะว่ามีหลายหน่วยงานนำคลื่นความถี่มาใช้  หรือบังคับให้นำความถี่นี้มาใช้งาน   เช่น  กระทรวงกลาโหมของสหรัฐอเมริกา

4. Microwave Frequency

ความถี่นี้คือความถี่ที่สูงกว่า 1 GHzขึ้นไป  ช่วงความถี่ที่นิยมนำมาใช้ในเทคโนโลยีอาร์เอฟไอดี (RFID) คือ 2.45 GHz และ 5.8 GHz  แต่ความถี่ 2.45 GHzจะได้รับความนิยมมากว่า  ความถี่นี้สามารถนำมาใช้ทั้ง   Passive RFID Tag และ Active RFID Tagความถี่นี้สามารถส่งข้อมูลได้เร็ว  แต่ทำงานได้แย่มากเมื่อไปใช้กับวัสดุที่เป็นโลหะและของเหลว

โดยสรุป  ลักษณะการใช้งานและคุณสมบัติของคลื่นความถี่แต่ละประเภทสามารถที่จะสรุปได้ดังตารางด้านล้างนี้

RFID (อาร์เอฟไอดี) คืออะไร

เทคโนโลยีอาร์เอฟไอดี (RFID – Radio frequency identification) คือ เทคโนโลยีหนึ่งที่ใช้ในการระบุสิ่งต่าง ๆ  โดยอาศัยคลื่นวิทยุ  ซึ่งต่างจากเทคโนโลยีอื่น ๆ  เช่น บาร์โค้ดที่อาศัยคลื่นแสง  หรือการสแกนลายนิ้วมือ  เป็นต้น  ในส่วนนี้จะอธิบายให้เข้าใจถึงหลักการของเทคโนโลยีอาร์เอฟไอดี (RFID Technology) และแนวคิดต่าง ๆ ที่เกี่ยวข้องกับเทคโนโลยีนี้

คลื่นวิทยุกับเทคโนโลยีอาร์เอฟไอดี (Radio Frequency and RFID Technology)

จากที่กล่าวในขั้นต้นว่า  เทคโนโลยีอาร์เอฟไอดี (RFID) อาศัยคลื่นวิทยุในการทำงาน  ดังนั้นเมื่อพูดถึงเทคโนโลยีอาร์เอฟไอดี (RFID)  สิ่งหนึ่งที่ขาดไม่ได้ที่จะต้องกล่าวถึง  คือคลื่นวิทยุ

คลื่นวิทยุ  (Radio frequency) เป็นคลื่น Electromagnetic ประเภทหนึ่ง  ที่มีความยาวคลื่นระหว่าง 0.1  ซม. ถึง 1,000 กม. หรืออยู่ในช่วงความถี่ระหว่าง 30 Hzและ 300 GHz    เมื่อเป็นคลื่นวิทยุจะเห็นได้ว่า  วัสดุที่นำใช้กับคลื่นวิทยุย่อมมีผลต่อการใช้งานอย่างหลีกเลี่ยงไม่ได้  ในวัสดุประเภทที่ที่คลื่นวิทยุสามารถผ่านได้สะดวกโดยไม่มีการสูญเสียพลังงาน ใด  วัสดุเหล่านี้เรียกว่า  RF-lucent  หรือ RF-friendly  หากนำเทคโนโลยีอาร์เอฟไอดี (RFID Technology) มาใช้กับวัสดุเหล่านี้จะไม่มีผลเสียต่อการใช้งาน  อย่างไรก็ตามยังมีวัสดุบางประเภทที่เป็นอุปสรรคในการนำเทคโนโลยีอาร์เอฟไอดี (RFID Technology)  มาใช้งาน  วัสดุประเภทแรกเรียกว่า RF-opaque  วัสดุประเภทนี้จะหักเหคลื่นวิทยุ  หรือทำให้คลื่นวิทยุกระจัดกระจายออกไป  ส่วนวัสดุอีกประเภทเรียกว่า  RF-absorbent  คลื่นวิทยุสามารถที่จะผ่านวัสดุประเภทนี้ได้  แต่อย่างไรก็ตามคลื่นที่ผ่านมานั้นจะถูกดูดซับไว้หมด  หรือต้องสูญเสียพลังงานมากในการที่จะทะลุผ่านได้

ถึงแม้ว่า  วัสดุแต่ละประเภทจะมีผลต่อคลื่นวิทยุ  อย่างไรก็ตามวัสดุประเภทหนึ่งจะมีผลคลื่นวิทยุแต่ละช่วงความถี่ที่แตกต่าง กัน  กล่าวคือ  วัสดุนั้นอาจจะมีลักษณะเป็น  RF-lucent  ในคลื่นความถี่หนึ่ง  ในขณะที่วัสดุเดียวกันนี้อาจจะเป็น  RF-opaque หรือRF-absorbent ในคลื่นความถี่ในช่วงอื่นก็ได้   ดังตัวอย่างต่อไปนี้

วัสดุLFHFUHFMicrowave
ผ้าRF-lucentRF-lucentRF-lucentRF-lucent
ไม้แห้งRF-lucentRF-lucentRF-lucentRF-absorbent
GraphiteRF-lucentRF-lucentRF-opaqueRF-opaque
ของเหลว (แล้วแต่ประเภท)RF-lucentRF-lucentRF-absorbentRF-absorbent
โลหะRF-lucentRF-lucentRF-opaqueRF-opaque
น้ำมันเครื่องRF-lucentRF-lucentRF-lucentRF-lucent
วัสดุที่ประกอบด้วยกระดาษRF-lucentRF-lucentRF-lucentRF-lucent
พลาสติก (แล้วแต่ประเภท)RF-lucentRF-lucentRF-lucentRF-lucent
แชมพูRF-lucentRF-lucentRF-absorbentRF-absorbent
น้ำRF-lucentRF-lucentRF-absorbentRF-absorbent
ไม้ชื้นRF-lucentRF-lucentRF-absorbentRF-absorbent

จากที่กล่าวในขั้นต้นว่า เทคโนโลยีอาร์เอฟไอดี (RFID Technology) ใช้คลื่นวิทยุ  (Radio frequency) ในการทำงาน  และคลื่นวิทยุที่ใช้ในเทคโนโลยีอาร์เอไอดี (RFID) จะอยู่ในช่วงความถี่ระหว่าง 30 Hzและ 300 GHz  จากช่วงความถี่ดังกล่าวทำให้สามารถแบ่งคลื่นวิทยุได้เป็น 4 ประเภท โดยจะกล่าวถึงรายละเอียดในบทถัดไปครับ  

อย่างไรก็ตาม  ปัจจบันเทคโนโลยีอาร์เอฟไอดี (RFID) ได้มีการพัฒนาขึ้นไปมาก   โดยเฉพาะอย่างยิ่ง เทคโนโลยี  UHF   RFID Tag สำหรับคลื่นความถี่ UHF  ได้มีการพัฒนาให้สามารถทำงานบนพื้นผิวโลหะหรือคววมชื้นได้มากขึ้น